
OFF -W - ---

U.S DEPARTMENT OF COMMERCE
National Technical Information Service

AD-A028 962

A Research Program
in Computer Technology

University of Southern California

July 1976

245050

I (/IIOR, AI lO.\ S(II:N.(:S iN.71 lilT : 16'6 ,.4' li .R: Af :,:. i, I R, ; ..d ,, " 90291

r ISI SCR 76-6

A RESEARCH PROGRAM IN COMPUTER TECHNOLOGY

Annuai Technical Report
0 July 1975 - June 1970

Get preparcd for I.

Defense Advanced Research Projects Agency

AUG 31 1976

A

__D__T__-)N STATEM.NT A

REPRODUCED'BY 'Approved for public release;

NATIONAL TECHNICAL Diztibution V' raited

INFORMATION SERVICE .-
U. S. DEPARTMENT OF COMMERCE

SPRINGFIELD, VA. 22161 I / 1 . ,N 1101R,\1.1

UNCLASSIFIED
St,. At ASS, Ck 4 IOC, THIS PAGE 'eWhen Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPOR NUMBE..R 2 GOVT ACCESSION NO. 3 RECIPIENT-S CATALOG NUMER

IS 1,'SR-76-4
I

4 'L 5 Lllr t ' 5 TYPE OF Rr.PORT & PERIOD COVERED

A Research Program in Computer Technoiogy, Annual Vechnical Report

Annual Technical Report, July 1975-June 1976. July 1975-June 1976
6. PERFORMING ORG. REPORT NUMBER

A ., CONTRACT OR GRANT NUMBER(e)

DAHC 15 72 C 0308ISl Research staff

9 P.RI-ORMING :)RGAN!ZATtN NAM4E AND ADDRESS 10 PROGRAM ELEMENT. PROJECT. TASK

USC/Inforipation Sciences Institute AREA & WORK UNIT NUMBERS

6616 Admiralty Way ARPA Order d2223
Merina del rey, CA 90291 Program Code 3D30 & 3P1O
I,%'POLLING OFFICE NAME AND ADDRESS 12 REPORT DATE

Defense Advanced Research Projects Agency July 1976
1400 Wi!son Blvd. 13. NUMBIER OF PAGES

Arlington, VA 22209 98
"4 A7 N YN(, AEN .V NAME & AODRESS(If different from Controlling Office) IS SECURITY CLASS. (of this report)

Unclassified
IS& OECLASSIFICATIO. DOWNGRADING

SCHEDULE

16 D-STRIBt;TION STA'EMENT tot this Report)

li- document is approved for public release and sale; distribution unlimited.

'7 OISTR9, -,UION S -EMENT (of the abstrtct enteredIn Block 20, it different from Report)

16 loPt'--EMENTARY NOT 5

19 KIft WORDS Continue on fev' tse side Ii n:ceseary and identi y by block number)

I. 6h-,Lract data type, abstracLion and representation, Alphard, Euclid,
interactive theorem proving, lemma generator, Pascal, program correctness,
program verif cation, software specification, verification condition

2: ARPANET. control memory, emulators, microprogramming, microprogramming
lanqeaq, microvisor, MLP-9OO, National Software Works. oerating_(OVERI_

AeSSRA -1 'Continuo on reverse side It necessary anod Identify by block number,

This report summarizes the research performed under Contract
OAIIC 15 72 C 0308 by USC/Information Sciences Institute from
SJuly 1975 to 30 June 1976. The research is aimed at applyinq

computer s,-icnce and technoiogy Lo problem areas of hicih DoD/miiit o
; inpa(A.

(OVER)

DD) 143 ITON OF I NOV 6 IS OSOLETE UNCLASSI FI SU TO ANGE
1; '; 1(12- 14- 601 I_ _ _ _ASSI__ _ _ _

SECURITY CLASSIFICATION OF THIS PAGE (When eta Entered)

UNCLASSIFIED
SECURITY CLASSIFICATIZN OF THIS PAGECISnsf DOM I al)

19. KEY WORDS (continued)

2: systems, resource sharing, TENEX, time sharing, writable control memory.
3: abstract prograrrinin§], domaihi-independent interactive system, natural ' _

language, nonprocedural language, nonprofessional computer users,

problem solving, problem specification, process transformation.
4: access control, co'r.:uter security, encapsulation, error analysis,

error-driven evaluation, error patterns, evaluation methods, protection
mechanisms, software security.

5: computer terminals, interactive message service, office automation,
nonprofessional computer users, terminal-based message service.

6: computer network, digital voice communication, network conferencing,
packet-switched networks, secure voice transmission, signal processing,
speech processing, vocoding.

7: distributed computation system, document printing capability, National
Software Works, networks, network terminal, text printing, Xerox Graphics
Printer.

8: ARPANET interface, computer network, KA/KI, KL2o4o, POP-tO, PDP-11/40,
resource allocation, TENEX, TOPS20, user quotas.

20. ABSTRACT (continued)

The ISI program consists of eight research areas: Program Verification --

logical proof of program validity; Programming Research Instrument --
development of a major time-shared microprogramming facility; Specification
Acquisition From Experts -- the study of acquiring and using problem
knowledge for making informal program specifications more precise;
Protection Analysis -- methods of assessing tne viability of security
mechanisms of operating systems; Information Automation -- development of a
user-oriented message service for large-scale military requirements;
Network Secure Communication -- work on low-bandwidth, secure voice
transmission using an asynchronous packet-switched network; Special Projects
-- a variety of activities and hardware developments in support of Institute
programs; and ARPANET TENEX Service -- operation of TENEX service and
continuing development of advanced support equipment.

L: I

UNCLASS IF FIED
I ,/ SECURITY CLASSIFICATION OF THiS PAGE(W7,en Oat. Entereci)

USC/INFORMATION SCIENCES INSTITUTE -1676 AJrabl) Vi~ i Matrina id Re) Ld:Iorpia 90291

ARPA ORDER NO. 2223

r - 11 1

S 1S?- 76-6

A RESEARCH PROGRAM IN COMPUTER TECHNOLOGY

Annual Technical Report
July 1975 - June 1976

prepared for theJ

Defense Advanced Research Projects Agency

Effective date of contract: 17 May 1972

Contract expiration date: 30 September 1978

Amount of contract: 817,996,485

Principal Investigator Keith W. Uncapher
and Director: (213) 822-1511

Deputy Director: Thomas 0. Ellis
(213) 822-1511

This research Is supported by the Defense Advanced Research Projects Agency under Contract
No. DANC15 72 C 0308. ARPA Order No. 2223. Program Code No. 30330 and 3P10.

Views and conclusions contained In this study are the authors' and should not be interpreted as representing
the official opinion or policy of the U.S. Government or any other person or agency connected with them

This document Is approved for public release and sale: distribution Is unlimited.

- IJNIVl:RSJTI' OF SOU7IIRN CALIFORN9IA\1

RESEARCH & ADMINISTRATIVE SUPPORT

Institute Administration:
Robert H. Blechen

Katherine Colegrove
Judy Gustafson
Georgene Petri

Librarian:
Rose Kattlove

PubUcations Group:
Nancy Bryan
Katherine Colegrove
G. Nelson Lucas

Secretaries to Directors:
Jeannette Christensen
Patricia A. Craig

44=

~ ~-, , . . - V 7 ' ~ ,

iiif

CONTENTS

Summary t
Executive Overview rU

1. Program Verification I

2. Programming Research Instrument 1P

3. Specifitation Acquisition From Experts 23

4. Protection Analysis 3S

5. Information Automation 40

6. Network Secure Communication 53

7. Special Projects 70

8. ARPANET TENEX Service 80

Publications 86

'P

'P"" ,', ; I J~ ,- ,, , - o ,

v

SUMMARY

I!
This report summarizes the research by USC/Information Sciences Institute from

I July 1975 to 30 June 1976. The research is aimed at applying computer science and
technology to problem areas of high DoD/military impact.

The ISI program consists of eight research areas: Program Verificat on--logical proof
of program validity; Programming Research Instrument--development of a major
time-shared microprogramming facility; Specification Acqui:ition From Experts--the study
of acquiring and using problem knowledge for making informal program specifications more
precise; Protection Analysis--methods of assessing 'he viability of security mecnanisms of
operating systems; Information Automation--development of a user-oriented message
service for large-scale military requirements; Network Secure Communwcation--work on
low-bandwidth, secui'e voice transmission using an asynchronous packet-switched Pt iwork;
Special Projects--a variety of activities and hardware developments in support of Institute
programs; and ARPANET TENEX Seriice--operation of TENEX service and continuing
development of advanced support equipment.

vii

EXEC TIVE OVERVIEW

Tht information Sciences Institute (ISI), a research unit of the University of Southern
California's School of Engineering, was formed in May 1972 to perform research in the
fields of computer and communications sciences with an emphasis on systems and
applications.

A close relationship is maintained with USC academic programs through active
cooperation among the Institute, the School of Engineering, the Department of Electrical
Engineering, and the Computer Science Department. Ph.D. thesis supervision is an integral
part of ISI programs, a, is active participation of research assistants supporting ISI
projects. ISI staff members frequently direct or participate in nationwide and international
meetings and conferences; the institute also hosts frequent colloquia and seminars as a
forum for distinguished speakers from other organizations.

The character and uniqueness of ISI are expressed in the follving objectives:

- A major university-based computer science research center.

0 A center with a largely full-time staff of researchers, augmented by
graduate students and faculty.

* A center which possesses a unique blend of basic research talent and
application and system expertise. The last two attributes are of special
significance to the application of computer science and technology to key
military problems.

* A university-based research center with strong active ties to the
U.S. military community and a strong leadership role in identifying key
computer R&D requirements in support of long-term military needs.

The In--titute is structured to provide research and development capability at the
system level--often required tc assure! an understanding of real problems and to provide
useful solutions in trnsferable form. Project leaders share visibly in the responsibility
for the conduct of each project and for the qualdy and impact of the reses-ch. At the
end of the fourth year of operation, the full-time professional research staff nimbers 43. -

The total number of IS[employees--including full-time research staff, participating faculty
and graduate students, &nd support personnel--is 85.

7

EXECUTIVE OVERVIEW viii

The activities of ISI's eight major areas of research and associated support projects
are summarized briefly below. Some of the research projects reported in this document
are discrete activities in themselves; others can be seen as parts of a larger whole. For
example, Program Verificaticn, Specification Acquisition, and the Programming Research
Instrument projects should be considered as individual parts of an overall research effort
in Programming Methodology; Irformation Automation, Network Secure Communicatic 1, and
Special Projects are linked elements of a major investigation into Network CommunicationsTechnology. These mutual interdependencies among the various projects at ISI contribute

largely to the fruitfulness of the Institute's research activities.

Program Verification. The goal of program verification research at ISI is to develop
an effective program ,erification system for proving that computer programs are
consistent with precisely stated detailed specifications of what the programs are intended
to do. The system is expected to replace significant parts of testing in current software
development, and will also provide important tools for developing and judging the success
of new programming language designs, new programming methodologies, and new detailed

specification techniques. Already running at ISI is an initial, experimental version of an
interactive program verification system whose design philosophy is to provide automatic
assistance for the verification process where practical, and otherwise to rely on human
int-. action. The system has verified numerous example programs. Important progress

has been made in the following areas: improved user environment and interface to the
verifier, extensible verification generator, algebraic approach to data abstractions including
their verification, and influence of verification on language design. The eventual impact
will be an increase in the quality of software.

Programming Research Instrument. PRIM is an interactive microprogrammable
environment used for the emulation of existing or newly specified computer systems with
major emphasis on providing debugging tools. These tools, available via NSW, provide the
users with more powerful debugging facilitis than available in the originai target
computer systems. The facility consists of a powerful microprogrammable computer
(MLP-900), ck,:e!y coupled to a TENEX operating system, and software to permit users to
create and debug new emulators and target sy.Aems. Two prototype emulators, the
UYK-20 and the U1050, have been completed and have been integrated into NSW. PRIM is
an attempt to generalize a solution to the problem of software development through the
use of emulation tools.

Specification Acquisition From Experts. The major effort of the SAFE project is
simpiy to allow users who are not computer programmers to functionally specify their
application directly to a computer system, with the system transforming this input into a
precise functional specification of the application. This system is intended to be both

independent of any particular problem domain and able to deal with "loose" i.e.,
incomplete, inconsistent, etc.) problem-orio.!ed descriptions of a domain through a
dialogue with the user. From this dialogue the system can acquire the "physics" (the
objects, laws, relationships, etc.) of the loosely-defined domain, structure it, and use it to

..

wWRi 41

EXECUTIVE OVERVIEW ix

understand further communication and finally to rewrite the specification in precise
operational form. Thz system is being developed in the context of a simplified real-world
military specifications manual. An informal, incomplete specification for first-level message
distribution has successfully been converted to a precise operational form. The system is
now being expanded to deal with more complex specifications.

Irotertion Analysis. The goal of this project is to develop efficient techniques and
sem omated tools for detecting ;n operating systems various types of protection errors,
i.e., errors that allow the systems to be cor.promised. The approach is empirical, based on
the observation:; that (1) protection errors fall into a limited number of distinct classes and
(2) techniques can be developed for finding the errors associated with each class. The
myethod is to collect a data base of known errors, use it to determine the error classes,
and (for each class) identify the relevant error characteristics for the purpose of
developing an effective search algorithm. To date, errors from a variety ot systems have
been collected and techniques for finding errors for three nf the classes have been
reported. The project proposes to analyze and report on the remaining seven error I

' classes. '

Information Automation. The Information Automation project has a dual goal: 1) to
develop the technology for providing on-line computer services directly to untrained users
and 2) to develop a secure, on-line, interactive writer-to-reader message service for the
military cormrunity. Such an on-line message service, new to the military, provides
interactive assistance for formal messages from the initial draft preparatioi through
coordination, transmission, and distribution. In addition, it will provide informal secure
"off-the-record" communication to reduce the need for face-to-face meetings. During the
past year the IA message service has progressed from a design on paper to a
near-operational system. 't is to be put at CINCPAC Headquarters on Ohau for formal
testing in an operational environment, beginning in July 1977.

Netweork Secure Communication. The major objective of ARPA's Network Secure
:ommunication project is tc develop secure, high-quality, low-bandwidth, real-time,

t ro-way digital voice communication over packet-switched computer communication
networks. This kind of communication is a very high priority military goal for all levels of
command and control activities. ISI's role in this effort is to develop efficient
user-oriented systems for digital voice communications, primarily over packet-switched
networks such as the ARPANf but also locally. The ISI NSC project is working on
network voice protocols, digital voice conferencing systems, voice-oriented network host
operating systems, real-time signal processing, hardware development, and other areas.
During the past year (1) the Network Voice Conferencing Protocol (NVCP) was developed,
(2) a sophisticated lozal CVSD conferencing system was implemented, (3) a
signal-processor-based demonstration system was specified, proposed, acquired, and is
being tested, and (4) the ELF operating system for the PDP-i I was extensively revamped
and augmerted to form the EPOS operating system.

EXECUTIVE OVERVIEW x

Special Projects. The major efforts for the current year were as follows. First,
further development was carried out on ISI's and ARPA's Xerox Graphics Printer (XGP), a
high-quality printing capability in the form of a network terminal. Second, II reviewed
technical progress and provided intormation and consultant service for the National
Software .. Crks, an ARPANET-based distributed operating system that is intended to
provide a uniform computing environment for software developers. The third area is that
of providing good human engineering for the military message service being developed by
the Information Automation project. To this end, ISI is writing firmwzre to be ,sed in a
modified Hewlett-Packard 2640A terminal. The goal is to provide nearly instantaneous
feedback for simple editing functions and flexibility by means of dynamic computer control
of the range of available functions.

ARPAINET TENEX Service. ISI is supporting, opera . ng, and maintaining three

complete TENEX systems on a schedule of 161 hours per week each, in order both to
provide TENEX service to ARPA and to support its research projects via the facilities at ISI
The Institute provides 24-hour availability of TENEX systems, maintenance, and operators,

continued development/improvement support, support of the XGP at IPTO, as well as ARPA
NLS user support and minimal NLS software support. Through this support we have
achieved increased long-term up-time., faster repair and improved preventive maintenance,
economy of scalo in operation, and the benefits of ISI expertise in establishing
requirements for optimal loading and high reliability. In addition, this experience is used
to assist in improving system reliability and to increase the number of users which can be
handled with required response time.

4' S

-11

V 'A-'. ~ '...................~.

.1.
PROGRAM VERIFICATION

Research Staff: Research Assistants: Consultant: Support Staff: I
I Ralph L. London Donald S. Lynn Lawrence M. Fagan Betty Randall

Raymond L. Bates Mark S. Moriconi
David R. Mosser David G. Taylor
David S. Wile
Martin D. Yonke

GOALS AND IMPACT OF PROGRAM VERIFICATION

In many computer application areas the consequences of a program not performing
as intended can be quite cosily or damaging. The goal of program verification research at
ISI is to develop a prototype program verification system for proving that programs are
consistent with precisely stated detailed specifications. With such a system one will be
able to achieve significant confidence that computer programs will perform as intended.
This system will be an ;rnportant part of finding solutions to the manifest problems of
current software systems--their high cost, their unreliable behavior, the difficulty of
modifying them, etc. [Goldberg73]. The sys'em will be used to help certify that software
is correct; it is expected to replace significant parts of testing in current software

development. It may be used in some cases to help determine whether protection and
security specifications are met. The immediate impact w:l1 be that at last programmers will
be able to demonstrate that their programs meet specifications. The system will also
provide important tools for developing and judging the success of new programming
language designs, new programming methodologies, and new detailed specification
techniques. The eventual result of advances in program verification will be an increase in
the quality of software.

Last year's ISI Annual Report [AR75] contains a description of the existing

verification system, named XIVUS, including an example of its use. During the current year
we have demonstrated important progress in the following areas:

* Improved user environment and interface to thn ,erifier.

* Extensible verification condition generator.

* Algebraic approach to data abstractions, including their verification.

" Impact of verification on programming language design.

, Each of these achievements contributes to the overall goal c4 producing an effective

interactive system for verifying significant programs that are written in several languagas
and that use current structuring and decomposition techniques. The results in each of the
four areas are described sequentially below.

- A.

PROGRAM VERIFICATION 2

IMPROVED USER ENVIRONH ENT

Program verification is a complex process. Consequently, part of the current
verification effort is aimed at providing an environment which is helpful to the user whose
goal s to verify a set of programs representing the solution of a particular task. During
this year, three modifications were made to the verification system towards providing the

' desired environment.

1. A new "toplevel," called the EXECUTIVE, was designed and implemented. It provides
a new command structure which guides the user through the verification process.

2. A user profile package was installed so that each individual may "tune" the system
to his ideas of how the verification process is best performed.

3. The theorem proving component has been modified; it has a new, simpler command
structure and records information used as the basis for any proved theorem.

The additions to the system are further explicated below, including the specific
motivations for each addition.

New EXECUTIVE

The new EXECUTIVE was designed to ease the user through the verification process
(a more detailed description, including an extensive transcript, can be found in (Yonke76]).
Several specific factors were considered in its design:

" Only operations which make sense in the current state of verification are available
to the user. For example, if the verification conditions have been generated for all
the functions and procedures of the problem, then the "GENERATE verification
conditions" command does not make sense. This implies that the available
commcnds dynamically chance based on the current state of verification.

" Item one should also apply to parameters or subcommands of the system. For
example, the PROVE command should accept, as an item to prove, only verification
conditions not already proved.

* The user of the XIVUS verification system should not be frustrated by giving an
erroneous command and having the system respond with a "do not understand"
message.

* The system should always have a reasonable sugge- tion for the next verification
step until the entire verification process is complete. Causing the current
suggestion to be performed should be very simple without impedirg in any way
the user's invoking any other reasonable operation to be performed.

PROGRAM VERIFICATION 3

0 The user should have, at any point within the command structure, a simple way to
interrogate the system for a list of the next alternative commands or parameters.

These goals were achieved by a command structure which exhibits the following
characteristics:

0 Command completion is similar to TENEX EXEC command completion. That is, if
enough characters have bepn typed to disambiguate the command, then either
typing the escape key (esc) or the space bar (sp) will be sufficient. Typing esc
completes the command, including "noise words," while sp does not. The difference
between this and the TENEX EXEC is that the system will not let you type in an
"illegal" character, while TENEX will.

There is one exception to the completion algorithm described above. Verification
condition names are essentially the program name used to generate them and a
number (used to identify different verification conditions within a program). When
the system is expecting the user to input a verification condition name, after the
user has typed a sufficient number of characters to identify the program name, the
rest of the name is automatically printed out to the point where a number is
needed. The user can then type the verification condition number. This
eli. inates the need for excessive typing.

0 The command structure is tree-like in the sense that some commands take
subcommands, which in turn might take subcommands. For example, the PRINT
command is used to print programn, verification conditions, and verification status.

0 At any point in the command structure, as mentioned above, the user may type a
question mark (?) and the list of the next alternatives is printed out. In the
example above, if the user typed a ? after he had specified that he wanted to print
a verification condition, a list of the verification conditions would be printed.

• Also, at any point in the command structure, the user may back up one ' /el by
typirg a special key. He may then reselect from the menu presented. ,s may
be repeated; therefore, after typing this special key a sufficient number jf times,
the user will be back at the top of the command structure.

0 The space bar (sp) serves a special purpose at the beginning of a command or
subcommand. If typed, the system suggestion is automatically taken and the
command is typed out instead of the space. Therefore, if the user always wanted
to take the system's suggestion, all he need do is hit the space bar.

The new EXECUTIVE greatly increases the ease of using the verification system. It
should also be helpful in bringing new users up to competence quickly.

PROGRAM VERIFICATION 4

User Poile PL e

The user profile package was motivated by two basic needs. One was to bring
together, in a cohesive package, all the internal flags already in the system. These flags
were knov . by the implementors, but this knowledge was ha'd (0 pass on. The other
motivation was to have certain informat'cn about how each individual user wanted the
system to perform for him. This information was incorporated into the system. The user
profile package initietes an English diaiogue with the user, asking him the appropriate
questions. After the user respcns.- is interpreted, the internal flags are set. This
package should be very helpful for a new user; since he can enter the dialogue at any
time, he can change the system as he progresses in using the verification system.

Theorem Prover Modifications

Two modifications were made to the theorem prover. The first was to design a new
command structure, similiar to that of the EXECUTIVE. During this process, new commands
were chosen to (1) make the commands reflect the operations performed and (2) combine
into one command operations which previously had to be done in a particular sequence.
See [Yonke76] for a more complete description. The second addition was motivated by
the fact that the user had to remember what he used for the basis of the proof of a
particular theorem. The theorem prover now sends information to the EXECUTIVE, which
remembers and can report which lemmas and rewrite rules--the basis for the proof--were
used to prove a particular theorem.

This work on the verification system has made it much more t-sable, for both
veteran and novice users. It helps the user by both guiding him through the verification
process and keeping track of information which was formerly the user's reponsiblity.
Even though it is possible to live without the new facilities, we insist on them for the
analogous reason we insist on high-level prograrmming languages rather thin assembly
codes. Further work is being done to provide new facilities to alleviate other user
burdens.

EXTENSIBLE VERIFICATION CONDITION GENERATOR

The only component of a program verification system which is entirely new to
computer technology is the "verification condition generator"--that portion of the system
which determines what "theorems" must be proved in order to establish that a program
does indeed have the specified properties. The XIVUS system is intended to be a tool for
verification of programs written in several different languages. At the same time,
research is under way into the best way to formulate and describe the rules for
generating verification conditions for constructs in each of the languages.

The current verification condition generator is inadequate for these purposes in that
it deals with only one language (a Pascal subset), and modification of it to incorporate
better formulations of verification conditions is quite dificult. These and spveral
additional considerations led to the design and implomentalion of a new verification
condition generator which:

PROGRAM VERIFICATION 5

0 Can be used with several different programming languages.

0 Can be modified and extended easily.

0 Will interface with an editor and parser to provide incremental verification
condition generation (reproving a program with minor changes should be easy).

* Accepts an enriched "assertion lIanguage" used by the programmer to indi':.ate the
intended properties of the program.

Both the new and old verification condition generators are based on the ideas
originated by King and Floyd, reformalized by Hoare, and developed by many others.
However, several new ideas are incorporated in the new one. An example best illustrates
the techniques. An inventory program which removes the "current order quantity" from
the "on hand quantity" should probably have the property that afterwards the "on hand
quantity" > 0. If there is an assignment statement in the program ONHAND -ONHAND
- CURRENTORDER, then a verification condition generator that "works backwards" will
insist that the user prove that (ONHAND - CURRENTORDER) > 0. This "subs',itution rule"
(right-hand side of the assignment for the left-hand side in the property to be proved) isactually quite dependent on the forms of the data structures involved. For example,

ONHAND might actually be a file access parameterized by "part number." For this
reason, the new verificat:on condition generator does not make the substitution above; it
merely indicates that one is to be made. The programming language designer must
provide the substitution rules to be used. In generel, the new generator rver makes a
decision that is either language-dependent or more properly made by another component
of the verification system.

To continue the example, the programmer might precede the above assignment with
a test: if CURRENTORDER > ONHAND then Roto BACKORDER. A verification condition
generator which "works forward" will conclude that after thi- 'tatement whatever was
true before the if still holds. In addition, - (CURRENTORDER > ONHAND) will hold. A
verification condition that could be generated is

~(CURRENTORDER > ONHAND)
implies

(ONHAND - CURRENTORDER) > 0

(which is not provable since it is not in fact quite true--there is an inconsistency between
the given oroperty and the program).

in general, for any ppth through a program the path can be "marked" and a
verification rndition generated that the predicate at the mark obtained by working
forward imp...s that obtained by working backward. The new technology involved is to
save both forward and backward predicates with each program node, enabling incrementalverification and enhancing the optios for verification condition generation: pure

forward, pure backward, or a mixture are all possible within the new system.I

PROGRAM VERIFICATION 6

The new system allows for different languages by providing an extension
mechanism: ne" syntactic constructs may be defined for any particular programming
language in terms of old ones. Verification conditions and/or Hoare axioms for the
construct are produced from the definition by the generator. The researcher in
verification technology or programming language design may then examine and modify
these rules, which are automatically invoked when the syntactic construct is used in a
program.

IThe basis for this technology--associating the predicates with the nodes--was
developed in part by Gerhart [Gerhart75]. Although the technology here is innovative,
the existence of the tool is morq important. Future extensions to the verification
condition generator include enriching the syn tactic constructs allowed (to parallel
constructs), enriching the semantics which can be conveyed to the generator,
encapsulating the substitution rules in a language-independent manner, and linking the
generator into the XIVUS system.

NOTE: The inconsistency can be removed by changing the given property to "on
hand quantity a 0."

ALGEBiRiC APPRO/CHI TO DITAAIIBSTR/ACT!ONS

In the algebraic approach to data abstractions, an abstract data type is defintd to
be a set of operations on a set of objects and a set of equations relating the operations.
Regarded as axioms, the equations serve as a representation-indepe'ident specification,
on which applications of the data type can be based and against which implementations
can be compared. An implementation of a data type consists of a representation, which
indicates how the abstract objects are to be represented in terms of some other data
type(s), and set of programs for the operations expressed in terms of the representation.
A correct implementation is one which satisfies the axioms of the specification.

One of the key ideas of the approach taken in .Guttag7Fha) is to express both the
axioms of the specification and the programs of an implementation of a data type as
rewrite rules. With a few relatively minor restrictions on their form, these rules can
be compiled or interpreted by a relatively simple pattern-match compiler or interpreter.
Such pattern-matching systems already exist in symbolic mathematical systems such as
Reduce, Scratchpad, and Macsyma, and extensive use has been made of the Reduce
pattern-match interpreter in the work reported in (Guttag76a] and [Guttag76b].

Expressing both axioms and programs 3s rewrite rules suggests a duality between
specifications ptd implementations that has important consequences for software design,
testing, and verification. In design of data types, the duality suggests that ihe task of
initially axiomatizing a data type can be approached as a programming task, using
ezpr'essions (operator-operand tree structures) as a representation. Using this
approach, it has been relatively easy to axiomatize familiar data types such as stacks, 4
queues, binary trees, strings, sets, lists, graphs, and files [Guttag76b], as well as newly
invented types such as "message exchange."

if

Il
PRlOGRAM VERIFICATION 7

Since the axiorns of a data type can be compiled into running programs, this
implementation can be used for initial testing with actual or symbolic data, perr":ing the
designer to test to a limited extent whether his specification captures the properties
intended. One can also test high-level algorithms which are programmed in terms of the
data type before fixing upon an actual implementation of the data type. Thus, a true
top-down design methodology can be achieved rGuttag75a].

Perhaps the most impotant consequences of the axiom/program duality are in
verification. By using both axioms and programs As rewrite rules in proofs, the proofs
become in large part very straightforward and computational in nature. In this re:spect
the proof method is very similar to some of the methods of [Boyer75] for verifying Lisp
programs. Combination of the axiomatic approach to data types and hierarchical
development of software results in a very important advantage in verification, namely,
factoring proofs into the same hierarchical structure as in th,9 programs [Hoare72. This
'levels of abstraction" approach becomes particularly attractive with algebraic axioms
because of the possibility of constructing axiom sets which are in an important sense
compicte [Guttag75].

An Ex'impie

The characteristics of algebraic axiom specifications and their use in verification are
nicely illustrated by the example of a symbol table data abstraction and its implementation
by a stack of hash tables. This exa.nrp!a, first introduced in [Guttag.5J, provides a
collection of operations for maintaining a symbol table, such as might be used in a compiler
for a block structured language. The informal specifications for these operations include:
(1) upon block entry one can redeclare previously used symbols (former attributes become
inaccessible until exit from the block); and (2) upon exit from a block, attributes declared in
the block become inaccessible. The formal specification with algebraic axiors defines six
operations on symbol tables with nine equations which relate operations to each other,
e.g., LEAVEBLOCK(ENTERBLOCK(symtab)) - symtab. The axioms define the behavior of the
operations precisely, yet do not prescribe or preclude any particular implementation. The
operations in an implementation are programmed in terms of operations of other data
abstractions, for which there are axiomatic specifications which can be used in carrying
out the verification that the symbol table axioms are satisfied. The symbol table
operations can, for example, be implemented by a Stack ot Mappings, the Stack being
implemented by an array/;ndex pair and a Mapping by a particular kind of hash table (an
array containing lists of ioentifier/attribute pairs). The verification of the symbol table
axioms then involves use of a set of dxioms for Stack operations, e.g., POP(PUSH(stk,itefr))
- stk, and a set of axioms for Mappings, e.g.,

EVALMAP(DE MAP(map,id,attr),id 1) -
if id-idl then attr else EVALMAP(map,idl).

(The form of this axiom, with the conditional expression and recursive occurrence of
EVALMAP on the right-hand side, is typical of the form used in algebraic axiom
specifications.) The particular implementations chosen for Stacks and Mappings are
verified ini the same way, using basic sets of axioms for arrays and lists, it is important to

4'4

PROGRAM VERIFICATION 8

note that the verification of the top level of ihe symbol table implementation does not
require knowledge of the particular implementations of 5tacks or Mappings, only their
aeoo.,atic specifications. Thus the proof of the entire imptementation factors nicely into

Sen. -Automatic Verification of Data Type Implementations

To carry out the verification of data type implementations using the algebraic
approach, a prototype set of facilities has been added to the XIVUS system. Using these
facilities, the complete implementation of the symbol table data type using a stack of ha .h
tables has in fact been verified. As an example of the proof process, consider the
verification of the top level implementation by a Stack of Mappings. The first step is to
direct the system to adopt the programs of data type symbol table and the axioms of data
types Stack and Mapping. These programs and axioms would all be in the form of rewrite
rules which the user had just entered or had read in from files. The command for
"adopting" a -qi ,f rules is separated from the act of reading them in so that several sets
of rules for an operator can coexist within the system. Assuming thai the symbol tableI ' ~ axioms have also been inpout to the system, the user then directs the system to generate

the verification conditions for the data type. These would consist of the symbol table
axioms and the "equality axioris" for the symbol table equality operator, a01 intelpreted in
terms of the representation.

The user can then attempt to prove each of the verification conditions using CEVAL,
a special "conditional evaluator" which has been developed primarily for this purpose
[AR75, [Guttag76a), or the standard simplifier/theorem prover of the system. In these
proofs the rewrite *rules from the Symbol Table programs and Stack and Mapping axioms
are used automatically, without further direction from the user. In some cases, completion
of a proof requires one or more assumptions to be made about the representation or the
Stack or Mapping data types. Initially these assumptions are input by the user and used
as needed without justification. To complete the verification of the implementation, it is
necessary to prove these assumptions, or a stronger set of assumptions, as theorems
(about the symbol table data type implementation or about the Stack or Mapping data
types). The verification conditions sufficient to establish these theorems are constructed
using the domain/range specifications of the data types, in accol.)ance with the principle
of induction on the number of applications of operations of the data type (Hoare72]. AWork is now in progress on extensions to the basic methodology of the algebraic
axiom approach to permit operations with side effects and to incorporate error handling
systematically. These extensions will contribute toward integrating the data abstraction
components of the XIVUS system with the existing Pascal verification components and
future components for verification of programs in other languages.

PROGRAM VERIFICATION 9

TI? E IMP AC OF VERIFICATION ON LANGUAGE DESIGN

In addition to verifying existing programs, written mainly in Pascal, we have been
deeply involved this year in the design of two new programming languages, Euclid
[Lampson76] and Alphard [Wulf76, Shaw76b. Both of the language designs have as one
of their important goals verifiability of the resulting programs. Naturally, additional goais
and numrros other concerns are exerting major influences on these languages.
Nevertheless, it has been both surprising and extremely pleasing to observe the degi ee to
which these concerns have reinforced each other. We deem it quite appropriate toprovide a short glimpse into the interactions, starting with Euclid.

The Euclid language, drawing heavily on Pascal and deliberately restricted to current
knowledge of programming languages and compilers, is intended for the expression of
system programs which are to be verified. Both the language and its compiler are given
part of the task of producing a correct program and of verifying its correctness. For
example, although global variables are permitted, they must be explicitly listed when used
in a procedure or a record. This explicit listing means that no reader of a program need
do computing or complex searching to determine the global variables. One class of
readers in particular, human or mechanical verifiers, has this information readily available
for use. Furthermore, the language is able to guarantee that two identifiers in the same
scope can never refer to the same variable, i.e., there is no aliasing. All of this by
deliberate design meshes well with a new, easily explained proof rule for verifying
procedure definitions and calls. The proof rule, developed for Euclid from several existing
proof iules, captures exactly the full Euclid procedure definition and call mechanism and
also removes restrictions and known problems with other proof rules. In a very real
sense, the Euclid design is one of adding restrictions and the enforcing mechanisms to
meet a desired level of understandability and verification capability.

The use and verification of pointers in Euclid is made easier than in other languages
by allowing each dynamic variable to be assigned to a language construct, the coiLection,
and guaranteeing that two pointe!rs into different collections can never refer to the same
variable. Thus assertions need not be invented and verified to obtain this guarantee;
instead it is all part of the language.

When possible, the abov* guarantees are provided by extensive compile-time
checks. If the compiler is unable to complete a check, it generates legalty assertions for
the verifier to establish. Verification concepts are thereby used to complement other
mechanisms.

The Alphard langu'ge is a new language design rather than one starting from an
existing language. The effort focuses simultaneously on issues of programming structure
(methodology) and verification. The abstraction mechanism of Alphard, the form,
encapsulates a set of related function definitions and associated data descriptions, allowing
a programmer to reveal the behavior of an abstraction to other users while hiding
information and protecting details of the concrete implementation.

This explicit distinction between the abstract behavior of a data abstraction and the
concrete program that happens to implement that behavior provides an ideal setting in

." "

PROGRAM VERIFICATION 10

which to apply Hoare's techniques for proving the correctness of data representations
[Hoare721. In the Alphard adaptation one shows that the concrete representation is
adequate to represent the abstract objects, that it is initialized properly, and that each
operator provided on the abstract objects both preserves the integrity of the
representation and does what it is claimed to do (in terms of both the abstract behavior
and the concrete procedure that actually implements the operator).

The verification technioue and the methodology decisions both require providing
specifications of the abstract objects and the related operations. They also need
conditions describing the concrete objects and operations, invariants holding over all
operations, and a representation function giving the relation between concrete and
abstract objects. All of this information, made an integral part of a form definition, was
originally included for verification reasons. Its presence, however, has directed attention
toward things which, on methodological grounds, ought to be of concern. The verification
technique exposed the need for certain language features, which at best were viewed as
conveniences and at worst would have been missed completely on the basis of
methodological or language considerations alone.

Methodology concerns have also benefited verification. The entire form concept,
for example, was introduced for methodological reasons. It is this factorization and
isolation, however, which appears to make either hand or mechanica! verification feasible.
Similarly the notion of generators., which permits hiding certain details of iteration, was
introduced on methodological grounds, but is also simplifying the verification of many
loops. Loop control using generators is implicit rather than explicit, and therefore a single
verification of that loop control suffices for all of its invocations.

An important part of language design is knowing what should be left out. During
the Alphard design, constructs were repeatedly proposed which -thc gave difficulty in
formulating the needed proof rules or which looked suspect on methodological grounds.
Usually such a problem signalled an unforeseen problem in the other domain. For
example, an early version of the iteration statement was much more elaborate than the
one currently adopted. Nevertheless, it seemed plausible on methodological grounds. Its
verification, however, was a horror to behold. Subsequently it became apparent that the
complexity of its verification was symptomatic of a difficulty which any programmer would
have in attempting to urJerstand the statement or its use.

Ni'merous example forms, and programs using these forms, have been designed and
verified [Wulf76, Shaw76b, London76, Shaw76a]. The proofs are modular, reflecting the
structure of the programs. In addition, the lengths of the proofs are within reasonable
limits and indeed quite encouraging. Most importantly, when modifications have been
made to a program, corresponding modifications needed in the proof have been nearly
always easy to identify and to complete, without the need to redo the entire proof. If the
implementaticn of an abstraction is changed, but not the specifications, then all programs
using the abstraction and all verifications of those uses are also unchanged.

Even if we never verify another program (and no one even remotely believes that

to be the case), already the impact of verification on language design and the expression
of quality programs is significant and worthwhile. In fact, one of our colleagues,

I

PROGRAM VERIFICATION 11

responding to an early revision of one of these languages, noted that it is "thrilling to see
verification finally interacting with language design."

REFERENCES

[Boyer75] Boyer, R. S., and J S. Moore, "Proving Theorems about LISP Functions,"
J. ACM, Vol. 22, No. 1, January 1975, pp. 129-144.

(Gerhart75] Gerhart, S. L, "Correctness-Preserving Program Transformations,"
Conference Record of the Second ACM Syrpoium on Prtnci ples of
Programming Languages, 1975, pp. 54-66.

[Goldberg73] Goldberg, J. (ed.), Proceedings of a Symposium on the High Cost of
Software, Monterey, Cplifornia, September 1973. Published by Stanford Research
Institute.

(Guttag75] Guttag, J. V., The Specification and Application to Programming of Abstract
Data Types, Ph.D. thesis, University of Toronto, Department of Computer Science,
Computer Systems Research Group Technical Report CSRG-59, 1975.

(Guttag76a] Guttag, J. V., F. Horowitz, and D. R. Musser, Abstract Data Types and
Software Validation, LSC/Information Sciences Institute, 1976.

[Guttag76b] Guttag, J. V., E. Horowitz, and D. R. Musser, The Design of Data
Structure Specifications, USC/Information Sciences Institute, 1976.

[Hoare72] Hoare, C.A.R., "Proof of Correctness of Data Representations," Acta
Informatica, Vol. 1, No. 4, 1972, pp. 271-281.

[Lampson76] Lampson, B. W., J. J. Horning, R. L. London, J. G. Mitchell, and
G. J. Popek, Euclid Report (draft), 1976.

(London76] London, R. L., M. Shaw, and W. A. Wulf, Abstracton and Verifi.cation in
Aiphard: A SymboL Table Example, Carnegie-Mellon University and
USC/Information Sciences institute, 1976.

[AR75] A Research Program in Computer Technology: Annual Techntcai Report, May
1974 - June 1975, USC/Information Sciences Institute, ISI/SR-75-3, September 1975.

[Shaw76a] Shaw, W., Abstraction and Verification in Aiphard: Design and Verification of
a Tree HandLer, Carnegie-Mellon University, 1976.

"VI-~~ - 7 .K

PROGRAM VERIFICATION 12

[Shaw76b] Shaw, M., W. A. Wulf, and R. L. London, Abstraction and Verification ain

Aiphard: Iteration and Generators, Carnegie-Mellon University an
USC/Information Sciences Institute, 1976.

[Wulf 76) Wulf, W. A., R. L. London, and M. Shaw, Abstraction and Verification in
Alphard: Introduction to Language and Mfethodology, Carnegie-Mellon University
and USC/Information Sciences Institute, 1976.

(Y -nke76] Yanke, M. D., The XIVUS Environment, XIVUS Working Paper No. 1,
USC/Information Sciences Institute, April 1976.

13

2.
PROGRAMMING RESEARCH INSTRUMENT

Research Staff: Research Assistant: Support Staff.

Louis Gallenson Ben Britt Rennie Simpson
Alvi, Cooperband
Ronald Cirrier
Joel Goldberg
Raymond L. Mason

INTRODUCTION

PRIM is an interactive microp'ogrammable environment used for creating emulators
of existing or newly specified computers with major emphasis on providing programming
debugging tools; it is available via remote terminals through the ARPANET. PRIM provides
editors, compilers, and debuggers for creating emulators as well as an environment for
providing target systems with debuggers and configurors that can be operated by the
user in the familiar language of the original system. The emulated machine generally
provides better user debugging facilities and greater flexibility in system configuration
than the original machine, while producing bit-to-bit compatible results on all levels of
execution. PRIM is an attempt to generalize a solution to the problem of software
development by means of emulation tools; it is a unique and powerful facility for improving
software development within the DoD user community.

The goals of the PRIM project are to facilitate more efficient programming by
providing and demonstrating integrated emulation-based tools that can give the user the
ability to create, debug, and execute programs for target machines in an interactive
(time-shared) environment richer in necessary user facilities than the original. These
tools are integrated into the National Software Works (NSW) system (see Section 7),
,r-',king them available on the ARPANET. PRIM is therefore a service facility, providing
unique tools to NSW programmers, as well as an experimental computer environment for
the researcher. The major implementations are the PRIM environment, a tool for emulator
tool builders, and two sample emulations, a UYK-20 tool arid a U1050 tool.

The use of emulations (i.e., simula.ions) of unavailable computer systems as an aid in
programming large systems is certainly not novel. The uniqueness of PRIM is to provide
an integrated set of user tools, available via remote terminals, utilizing a well supportedan ~ ~ ~ opue inerte srteminas uiizn
general-purpose multiaccessed computer system (TENEX) and near real-time emulations,
rich in debugging aids, for software development. Like NSW, the major aim of the PRIM;: project is to permit the military community easy access to the most recent computer

.!- . I

PROGRAMMING RESEARCH INSTRUMENT 14

technology, allowing the use of an existing operating system, editors, compilers, and other
programs for creating and debugging new software. In addition, PRIM is demonstrating the
ease of introducing some types of new tools into NSW by emulating the computer system
rather than implementing hardware and software compatible with the protocols of th,* NSW
operating system and the ARPANET.

The major project effort for this reporting period is the design and implementation
of a PRIM system tailored to the needs of military programmer while enhancing the
emulator-writing capabilities for additional tools operable within the PRIM facility. This
new effort utilizes the PRIM facility completed in 1975. (A detailed description is found in
the PRIM User's Manual and need not be repeated here.) The tasks being completed for
this reporting period are as follows:

* New TENEX MLP-900 Driver

* PRIM Exec
e PRIM Debugger
e PRIM Tool

UYK-20 Tool
9 U1050 Tool

TIlE PRIM FACILITY

The PRIM system was developed at ISI as a subsystem of TENEX. PRIM consists of
an MLP-900 microprogrammable processor and appropriate software to drive the
MLP-900, to support MLP-900 microprogramming, and to provide an environment in which
users create, manipulate, and interact with their emulators and/or emulated systems.

Hardware

PRIM's hardware system is based on two processors: the shared use of a Digital
Equipment Corporation's PDP-1O with other network users and the STANDARD Computer
Corporation's MLP-900 prototype processor. The PDP-10 and MLP-900 share memory as
dual processors; the MLP-900 is also a device on the PDP-10 I/O bus. The PDP-10,
connected to the ARPANET, runs under TENEX with a paged virtual memory. Its processor
contains 256K words of 36-bit memory. The I/0 operations performed by TENEX include
file, terminal, and network handling, swapping, and all other accesses to peripheral devices.

The MLP-900 is a fast, powerful vertical-word microprogrammed computer that has
been tailored to interface the TENEX system. !t contains 4K 36-bit words of control
memory, 80-nanosecond cycle time, and runs asynchronously with a 4 MHz clock. A major
modification of the MLP-900 has been the introduction of a supervisor state which allows

PROGRAMMING RESEARCH INSTRUMENT 15

the processor to be shared with full protection between users. Prior to this project, little
had been done toward making the multitude of available microprogramred processors
potentially sharable resources. This initial experiment goes a long way toward making
microprogrammed processors widely and inexpensively available. The hardware
environment was completed in 1974.

Software

The principal items of PRIM software are the General Purpose Microprogramming
Language (GPM) compiler, the MLP-900 microprogram supervisor (microvisor) and the
MLP-EXEC. The remaining software -- TENEX MLP-900 Driver, PRIM Exec and Debugger
(PRIM Tool), the UYK-20 emulato:r, and the U1050 emulator -- was implemented during this
reporting period.

GPM and the GPM Compiler. GPM is a high-level machine-oriented language,
designed explicitly for writing programs for the MLP-900. As a high-level language, GPM
offers a block structure and statement syntax similar to PL/1 or ALGOL. The compiler is
capable of producing multi-instruction code per statement as well as statements producing
exactly on~e MLP-900 instruction per zstatement. The GPM compiler was essentially

completed in early 1974; for a more detailed account of its development the reader should
consult the PRIM User's Manual.

MLP-900 Microvisor. The MLP-900 microprogram supervisor (microvisor) is a small,
fully protected resident system that controls the MLP-900 and its communication with the
PDP-1O. It loads and unloads the user's MLP-900 context upon command from the
PDP-1O, supports paging of the user target program, protects main memory and the rest
of the PDP-10 system from emulator errors, and provides the emulator with a few other
services. The microvisor interacts only with the user microcode and the TENEX MLP
driver

The TENEX MLP-900 Driver. Access to the MLP-900 from a TiENEX process is
accomplished via the MLP driver in TENEX. The driver is responsible for initializing the
MLP-SOO microcode, controlling and swapping users, and passing along all the I/0 req,,Csts.
The driver is an extension of the microvisor; all communication with the MLP-900 goes
through the driver, while communication with the driver occurs througil the normal I/0
JSYS's.

To improve the security and efficiency of operation, the current version of the
driver has been incorporated into the TENEX monitor. The new TENEX MLP-900 driver
will appear functionally the same to PRIM users as the original driver (written as a user
program) with improvements in responding to page faults, swapping, and I/0 requests.
The MLP-900 is an I/0 device to TENEX and uses existing system calls for communication.
The security of the system was improved by denying the PRIM users the ability to write

- .%lrL.j U . .

PROGRAMMING RESEARCH INSTRUMENT 16

4

and load their own mic-)visor. This capabiiity is restricted to maintenance mode and only

used by ISI personnel.

PRIM Exec. The PRIM Exec has replaced MLP-EXEC for the emulator user.
(MLP-EXEC, described in the P RIM Ur's Manu4 served as the vehicle for creating and
checking out MLP emulations prior to the development of the PRIM Exec and is replaced by
the PRIM Exec.) The PRIM Exec provides the environment in TENEX needed to support each
of the PRIM MLP-900 emulators, together with a command language allowing the user of a
particular (emulated) computer to access that environment with the already familiar
vocabulary of that computer.

The emulator support consists of the module responsible for controlling (emulated)
execution, plus a server responsible for satisfying the emulator's I/0 requests. This I/0
server offers the emulator a full range of I/0 operations, including "magnetic tape" and
"disk" operations (actually performed on structured TENEX disk files).

A command language interpreter in the PRIM Exec provides a uniform terminal

interface modelled after the TENEX Exec, but with commands oriented toward the
needs--and vocabulary--of the program mer familiar primarily with the computer being
emulated; additional facilities are provided tI-i emulator-writer for the development and
checkout of a new emulator for the PRIM system. (The tailoring of the PRIM Exec, and also
the PRIM debugger, to the details of a particular emulated machine, including its
terminology, is accomplished through a set of machine-specific tables that accompany each
emulator.)

The majority of the commands concern the building (and interrogating) of the
emulated machine's environment, e.g., installing devices on the machine, mounting TENEX
files on those devices, and modifying the size of memory. In addition, there are commands
that allow a complete checkpoint and subsequent restoration of the user's state and the
generation of a transcript of all or part of a PRIM session.

PRIM Debugger. The PRIM debugger is a table-driven interactive symbolic
debugger that permits a user of the PRIM system to debug target-machine programs in
terms of symbols defined for the target machine, using the data representation and
instruction formats of that machine. The debugger also provides symbolic access to the
MLP context; it uses a command language with feedback and help available if needed.

Some of the abilities provided by the PRIM Debugget are

1. To evaluate expressions of arbitrary complexity using the target
machine's arithmetic and recognizing the target machine's symbols.

2. To display and modify the contents of lists and ranges of target-machine
location, including some control panel functions.

PROGRAMMING RESEARCH INSTRUMENT 17

3. To set and ,.lear any number of read, write, and execute program breaks
(or any combination thereof) whenever in the target machine they are
appropriate (breakpoints are marked in metabits in target memory).

4. To display a history of the most recent target program jumps and transfer

control to designated addresses.

5. To assemble symbolic target machine instructions on input and
disassemble them on output, including symbolic expressions as addresses.*

The tables that supply machine-specific information to the debugger are supplied by
the emulator developer. Among the information contained are

1. Descriptions of the properties of various target-machine and MLP address
spaces.

2. Symbol tables for all target-machine symbols and appropriate emulator
symbols.

3. An instruction format description, including symbolic op codes.

4. Routines to convert from the internal data representation of the debugger
to the data representation of the target machine and vice versa.

5. Routines to perform arithmetic and logical operations according to the
conventions of the target machine.

DESCRIPTION OF PRIM TOOL

As a tool, PRIM is the hardware and software mentioned above, plus a new
user's manual directed towards future emulator implementors; the latter is the o,.Iy
component lacking (completion is scheduled for FY77). In general, we are striving for a
complete, exact emulation of the target machine, including riot just instructions and
registers, but also clocks, interrupts, machine states, memory protection and relocation,
and nearly-real i/O. Complete instruction sets, functionally identical to the emulated CPU,
are required to produce bit-compatible results in the working registers. The actual
implementation of machine instructions is transparent to the user; the emulation need be
"correct4 only at those windows in the emulated cycle where interrupts may logically
occur.

* Doftned by tlbrit machine tables Scheduled for completion by October 1978.

PROGRAMMING RESEARCH INSTRUMENT 18I4
Also, we are striving for a better target system for debugging new programs even

at the Pxpense of slower execution time. To achieve this goal, PRIM emulators are limited
to 32-bit computers, where th," extra bits are used as meta-bits for the conditional breaks.
Emuated timing information is provided for instruction executors as memory references
and I/0. Jump history queues are provided for several of the most recent target system
jumps. A number of parameters are provided to allow users to easily configure and save
individual computer systems (I/0 devices, memory size, speed of CPU, etc.). The major
attributes for PRIM-based tools is in its flexibility and in that the debugging environment is
external to the target machine d dlot.s not interfere or change the run-time properties of ;

the target programs.

AIN/UYK-20 EMULATOR

We have completed a "RIM-based emulation of the AN/UYK-20 which provides a
complete and accurate AN/UYK-20 processor, as detailed below; included in the emulation
are CPU instruction execution, channel instruction execution and data transfer, clocks,
interrupts, control panel switches, and an assortment of asynchronous I/0 devices.

Instruction Execution

The complete basic instruction set is implemented; the optional instructions
(MathPack) are not included in the initial release but will be available in FY77. Where the
AN/UYK-20 specification states a restriction on the use of an instruction, but does not
specify the consequences of violating that restriction (e.g., requiring even registers in
"double" instructions), the emulator halts and reports a program anomaly when such a
violation occurs. Indirect addressing under the control of Status Register 2 and relat;,
addressing via page registers are included.

Memory

Both main memory and NDRO are implemented. Main memory size may be altered in
8K increments; the available memory is assumed to be contiguously addressable from zero.
The memory is a single-port memory (but adding DMA as part of a device requiring it is
straightforward).

IOC EXECUTION

I/0 Controller (IOC) command and chaining execution are implemented, together with
byte, word, and double-word data and function transfers. All sixteen channels, and their
control memory, are available. All data transfers (between emulated channels and

',, = *, ,, , . r.', , ,,.:, -., ,-. . , N , - , .. , ± .,,., ,. , ,,, ,, ,*A1, I=.: ' , i = ,=1
4

* 41, t, -- ,,, - , ", , ,,'= - ,,. .. ''

PROGRAMMING RESEARCH INSTRUMENT 19

emulated devices) are byte-parallel, using the natural byte size of the device. Data (and
function) transfers in all cases are driven by the device, at the device's rate, ignoring any
programmed modulation rate.

This implementation is correct for parallel and NTDS channels. For asynchronous
communication channels, the only visible effect on programs is that the data transfers run
"correctly" regardless of the serial Informu.;on provided to the channel. For Y-nchronous

communication channels, an additional problem arises when there is, in fact, a .ure bit
stream; for such a device, the emulation must do bit-at-a-time transfers, using the serial
info to reassemble the "bytes".

Clocks and Timing

Both real-time and monitor clock registers are implemented, with a user-specifiable
modulation rate (the default is the internal rate, which is one millisecond). AN/UYK-20
time is counted in a 50-nanosecond internal timer; no relationship is specified between
real (MLP) time and AN/UYK-20 time. Emu!ated instruction timing (both CPU and IOC) is
counted according to the AN/UYK-20 specification.

Interrupts

The complete interrupt facility is implemented, and all interrupts (except power
fault) are generated when appropriate. Power fault (and any other interrupt) can be
forced by the user by setting the associated flag via the debugger.

Console Switches

Various control panel switches are implemented as cells which can be manipulated
by the user (using the debugger). Normal toggles are set by the user and sensed by the
emulator; return-to-neutral toggles are set by the user, then cleared by the emulator after
it has senseo !he setting. The implemented switches are Bootstrap, Load/Stop, Program
Stop, and Clock Disable. There are no indicators as such; all the registers and state
information are accessible through the debugger.

1/0 Devices

* All emulated I/O devices run asynchronously with respect to the AN/UYK-20
processor (CPU and IOC), scheduling themselves for MLP service in terms of the internal
(50-nanosecond) timer. Device timing is based upon a single parameter which expresses

the time required for one basic operation, typically the interbyte time interval. Scheduling

PROGRAMMING RESEARCH INSTRUMENT 20

for all operations is based upon fixed relationships with the timing parameter. The

parameter for each device can be set by the user, with the default giving the actual devicespeed.

The initial complement of devices, required by the Level II software, is as follows:

9 Univac 1532 I/0 console.

* Cipher Mark I magnetic tape system. Reads and writes emulated tape
files within the TENEX disk system; a utility for converting between real
magnetic tapes and these emulated tapes is available.

* Documation card reader. Capable of reading either TENEX ASCII text files
or card binary files.

0 Versatec matrix printer.

Channel and Device Configuration

Installation is done on a channel-by-channel basis. Each installed channel may have
any implemented device installed; the emulation system has no restrictions regarding
channel groups, and does not enforce any such restrictions. installing a device implicitly F
specifies the type of chanrel; one may not mount a device on the wrong type of channel.
Mounting is done on instalied devices by associating TENEX file(s) with the device. For
devices which are actually multidevice controllers, mounting is done separately on each
unit. In general, a single TENEX file is mounted on each device; in the case of emulated
terminals, however, separate input and output files are needed when disk files are to be
used. Translation of data, where applicable, is specified at this time. The speed (transfer
rate) of a device can be specified at any time; ihe default is the actual device speed.

UROSO TOOL

We have completed a PRIM-based emulation of the U1050 which provides a complete
and accurate processor as detailed below; included in the emulation are CPU instruction
execution, I/0 instruction and data transfer, clocks, interrupts, control panel switches, and
an assortment of asynchronous I/0 devices.

Instruction Execution

The complete instruction set is implemented. As with the AN/UYK-20, where the
U1050 specification states a restriction on the use of an instruction but does not specify
the consequences of violating that restriction, the emulator halts and reports a program
anomaly when such a violation occurs.

PROGRAMMING RESEARCH INSTRUMENT 21

Memory

Main memory size may be altered in 8K-byte increments; the available memory is
-Iassumed to be contiguously addressable from zero.

Clocks and TimingJ

U1050 time is counted in a bC,-nanosecond internal tmer; no relationship is specified
between real (MLP) time and U1050 time. Emulated instruction and contrcller timing is
counf'-.d according to the U1050 specification.

Interrupts

The complete interrupt facility is implemented, and all interrupts (except internal
parity errors) are generated when appropriate. Any interrupt can be forced by the user

by setting the associated flag via the detugger.

Console Switches

Various control panel switches arto implemented as cells (hat can be manipulated via
the debugger. Normal toggles are set by the user and sensed by the emulator;
momentary switches or toggles are set by the user, then cleared by the emulator after it
has sensed the setting. The implemented switches are Clear, Start, Continue, Card-load,
Tape-load, Operator request, and three sense switches. There are no indicators as such,
since other control functions are available through the debugger.

I/0 Devices

All I/0 devices are implemented except for high-speed communications. All channels
(except 4 and 5) are available. All data transfers (between emulated channels and
emulated devices) are byte-parallel, using the natural byte size of the device. Data
transfers in all cases are driven by the device, at the device's rate.

All emulated devices run asynchronously with respect to the U1050 processor,
scheduling themselves for MLP service in terms of the internal (50-nanosecond) timer.
Device timing is either fixed in the emulation or is based upon a single parameter that
expresses the time required for one basic operation, typically ths interbyte interval.
Scheduling for all operation is based on fixed relationships with the timing parameter.
"'he p3rameter for each device can be set by the user, with the default giving the actual
device speed.

- .-

PROGRAMMING RESEARCH INSTRUMENT 22

The. implemented I/0 devices consist of a printer, cari reader, card punch,
low-speei communications (up to 15 units), mass storage (one disk unit), and one
read/writ tape unit.

Device Con figuration

Installation Is done on a channel-by-channel basis. As each U1050 channel is
committed to a particular type of device, care must be exercised that each device is
installed on its proper channel.

CONCLUSIONS

By October 1976 the PRIM project will have realized all its major goals: to provide a

rich microprogramming environment for computer scientists, provide programming tools
under NSW to the military community, and make the technology available to the DoD
community. (As mentioned above, the necessary documentation will be completed during
FY77.) The PRIM facility will reriain at I1S and continue to support the efforts of NSW and
SDL in providing integrated ccrnputer tools for programmers and system designers. PRIM
personnel will continue to support these users by completing the PRIM environment
(adding configuror), completing the user documentation, providing user guidance, and
improving the capabilities of the existing tools. Two planned implementations are a dual
UYK-20 emulation and a controller for real-time i.nputs.

When these tools are completed, the PRIM project will have s'Jccessfully completed
the PRIM tool and the LYK-20 and U1050 tools. We are optimistic about user acceptance
of these tools and the whole PRIM environment. The PRIM architecture (characterized by
the dual processors, one of which is multiaccessed, available via remote terminals, and
provides a well supported general-purpose programming environment rich in programming
tools and the other of which is a fast microprogrammable CPU) is the correct approach to
providing emulation-based programming tools. The military community has recently shown
interest in using emulation-based tools to implement and develop large software systems.
The existence and general availability of PRIM should provide incentives for the

*development of additional PRIM-like systems for general use.

REFERENCE

Gallenson, Louis, et al., PRIM Use"s Manua, USC/Information Sciences Institute,
ISI/TM-75-1, April 1975.

ASI/M A

23

3.

SPECIFICATION ACQUISiTION FROM EXPERTS

Research Staff Support Staff.
Robert M. Balzer Nancy Dechter

Neil M. Goldman
Divid S. Wile

INTRODUCTION

Only modest gains in programming productivity have been produced in 25 years of
software research, but the groundwork has been laid for major advances through
rationalization and automated aids. This groundwork rests on two critical ideas: that
specification must be separated from implementation, and that the separation between
these two processes should be a formal operational abstract (i.e., very high level) program
rather than a nonoperational requirements specification. Structured programming
represents the first results of combining these ideas. It is a special case of a more
general two-phase process, called Abstract Programming, in which an inform.-l and
imprecise specification is transformed into a formal abstract operational progra:., which is
then transformed into a concrete (i.e., detailed low-level) program by optimization.
Abstract programming thus consists of a specification phase and an implementation
(optimization) phase which share a formal abstract operational program as their common
interface.

The concept of abstract programming is completed by adding the feedback loops
required by testing, maintenance, and tuning. In conventional programming, where no
abstract program exists, these feedback loops all operate on the optimized concrete
program. On the other hand, in abstract programming, if an effective method can be
found for guaranteeing the validity of an implementation (that is, the functional equivalence
of the abstract and concrete programs), then the validation process can be shifted to the
specification phase to show equivalence between the user requirements and the abstract
program. Thus, validation could, and should, occur before any implementation.
Furthermore, if the implementation process could be made inexpensive through computer
aids, then maintenance could be performed by modifying the specification and
reimplementing it rather than directly modifying the optimized concrete program, as is
current practice. The importance of such an advance can be recognized when one
realizes that optimization is the process of maximally spreading information (to remove
redundant processing), and that modification requires information localization. Thus, the
two processes are diametrically opposed; this fact explains much of the current problem
with modifying and maintaining existing programs. The second major cause of this dilemma

SPECIFICATION ACQUISITION FROM EXPERTS 24

is that optimization obscures clarity and thus makes it difficult for maintainers even to

understand how the concrete program operates.

It is therefore clear that mejor advances in programming will hinge on the ability to

provide an inexpensive optimization process with guaranteed validity so that maintenance

and validation can occur in the specification ohase on the abstract program (as shown in

Figure 3.1) rather than in the implementation phase on the concrete program.

Formal

Informal
Abstract

Concrete

Design Operationa Opiizton-V Program
Specification

Porm . uig ,

.. ~pe~ftc~i~flProgram

Testing -

Figure 3.1 Abstract programming

The key element of the whole abstract programming approach is the abstract

operational program itself. Currently, considerable effort is directed toward designing

appropriate languages for writing such abstract programs; however, no matter how

"high-level" these languages become, they are formal programming languages, and as such

demand unambiguous, complett., and consistent specifications. It is just these demands

that make programming difficult and that make necessary a tool to aid specifiers in buidiMg

suitable formal specifications.

Currently, all large software systems are specified in written form at a number of

levels of detail before implementaVon begins. One such level is the "functional

specification," which describes in natural language how the system is supposed to operate

and represents a first-level design. These specifications are currently used by

programmers as the description of what to implement. Unfortunately, problems arise

because the specifications, although generally understandable, are generally neither

complete, unambiguous, nor consistent. The programmer is left to his own ingenuity to

discover these problems and to fix them himself or to obtain a clarification from the

specifier.

SPECIFICATION ACQ(JISITION FROM EXPERTS 25

PROJECT GOALS

The Specification Acquisition project has therefore adopted as its goal the
development of a system that aids system specifiers in converting their informal
specificaitions into a precise operational abstract program. To produce such a system we
needed both on understanding of the structure and content of such informal specifications
and a theory of how they could be formalized. We therefore first undertook an extensive
survey of existing military functional specifications (as embodied in Military Standard-490
85 specifications). These natural language descriptions represent a first-level design of
the intended system. They apportion the required processing Into modules and describe
the interfaces Uetween the modules and the overall control structure. Because the
audience for these descriptions is other people (as opposed to computers), they employ
the full variety of detail suppression mechanisms hund in natural language, including
omitted parameters to actions, anaphoric reference, iplicit or omitted control structure,
terminology shifts, part/whole interchangeability, etc. (These mechanisms are more fully

described in the! Appendix.) The reader of the specification is required to amwlify the text
and determine for himself which details have been suppressed.

Our study of these specifications and their detail suppression mechanisms led to our
proposed theory of how people understand such specifications and fill in the suppressed
details. Our theory is simply that these specifications are understood not in a general
natural language context, but rather in the much more specific context that an operational
program is being specified. Understanding these specifications basically requires that the
correct interpretation of each statement is chosen from several possible interpretations of
the natural language statement. The key to our theory is that these choices are guided
by the statement's use in the operational program. Fortunately, programs are highly
coistrained objects (one reason it is so hard to construct them) and therefore act as
efiective filters of possible interpretations. In Artificial Intelligence terms, program
understanding is a domain of strong semantic support.

The SAFE system is based on this theory. It forms the individual statements into a
program schema and then attempts to "run" the schema. Symbolic rather than actual data
is used as input so that general program behavior can be analyzed. At each step in this
"running" of the program a particular interpretation must be chosen for the current
statement before it can be executed. The chosen interpretation is accepted if and only if
it does not cause any violations of the rules of well-formedness of programs, which are of
three forms. First, the program must pass a set of static (syntactic) well-formedness rules
such as "parameters must be used in a routine" and "the type of on actual argument must
agree with the corresponding formal parameter type." Second, the program must pass a
set of dynamic (semantic) well-formedness rules, such as (1) "if X is performed for the
purpose of Y then Y must use the results of X," or (2) "the predicate of an IF statement
cannot be determinable from the program itself" (if it were, then its evaluation is

.= -

SPECIFICATION ACQUISITION FROM EXPERTS 26

independent of the actual input and therefore not really a conditional as expected).
Finally, the program behavior cannot violate any constraints of the domain.

Whenever one of these rules is violated, the "run" is backed up to the last choice
point and a different choice is attempted (if no possibilities remain, then the previous
choice point is tried). This process is continued until either a successful "run" is obtained
or all possibilities have been exhausted. Interpretations are thus chosen and evaluated in
the context of how they are used in the run-time environment of the progra-m. The
process of "running" a program with symbolic inputs, called meta-evaluation, has been
extensively developed by researchers interested in proving properties of programs. As
far as we know, this project represents the first use of met*-evaluation for program
urderstanding rather than program proof.

PROGRESS AND ACi7MPLISHMENT$

A major milestone was achieved when the SAFE system transformed the informal
functional specification shown in Figure 3.2 into an operational program. The informality
of this specification is shown in Figure 3.3, which indicates some of the suppressed details,
terminology conflicts, and ambiguous constructs contained in this example. The formal
program produced as the precise specification of the input in Figure 3.2 is shown (in a
simplified publication syntax) in Figure 3.4.

This example was extracted from an actual Army functional specifications manual.
The original specification was much larger and more complex, but the simplified version
retains the essential character and style of the original. It should be noted from Figure
3.2 that the actual input is parenthesized (each noun-phrase and verb-phrase is
parenthesized) so that syntactic parsing considerations can be avoided. Such
parenthesization does not, however, solve or mitigate the serantic interpretation issue
discussed above (nor those shown in Figure 3.3) which still remain for the system to

resolve by meta-evaluation.

In an effort to determine how difficult it is to understand this particular informal

specification and convert it to an operational abstract program, we asked several staff
members to construct an abstract program corresponding to this specification. We asked
them not to optimize the abstract program because our system is not concerned with
efficiency issues.

The problem was much more difficult than we suspected. The subjects averaged
eight hours to accomplish the task and each subject had either design or coding errors, or
both. Furthermore, the programs produced were approximately the same size as that
produced by the system. One interesting result of this test is that the system mace one

SPECIFICATION ACQUSITION FROM EXPERTS 27

error--also made by one of the subjects. The error was that cpies of the editpd
message were distributed rather than copies of the original; it w" caused by the fact that
the system didn't understand that distinctions between original and current state are
frequently suppressed, and because its current analysis of the usage of produced results
is very simple. Both of these deficiencies are expected to be corrected in the next
version.

PLANS

Though the results using this example are very promising, and although we have
attempted to build a general system capable of handling a wide variety of specifications
from many different domains, it is extremely difficult to extrapolate from a single data
point. We therefore are planning to present several different and more complex examples
to the system during the next year.

((MESSAGES ((RECEIVED) FROM (THE "AUTOOIN-SC"))) (ARE PROCESSED) FOR (AUTOMATIC DISTRIBUTION
ASSIGNMENT))

* ((THE MESSAGE) (IS DISTRIBUTED) TO (EACH ((ASSIGNED)) OFFICE))

* ((THE NUMBER OF (COPIES OF (A MESSAGE) ((DISTRIBUTEO) TO (AN OFFICE)))) (IS) (A FUNCTION OF (WHETHER
((THE OFFICE) (IS ASSIGNED) FOR ((*ACTION") OR ("INFORMATION"))))))
* ((THE RULES FOR ((EDITING) (MESSAGES))) (ARE) 0: ((REPLACE) (ALL LINE-FEEDS) UITH (SPACES)) ((SAVE)

(ONLY (ALPHANUIMERIC CHARACTERS) AND (SPACES))) ((ELIMINATE) (ALL REDUNDANT SPACES))))

* (((TO EDIT) (THE TEXT PORTION OF (THE MESSAGE))) (IS) (NECESSARY))

* (THEN (THE MESSAGE) (IS SERRCHEO) FOR (ALL KEYS))

* (UHEN ((A KEY) (IS LOCATED) IN (A MESSAGE)) ((PERFORM) (THE ACTION ((ASSOCIATED) MITH (THAT TYPE OF
(KEY))))))

* ((THE ACTION FOR (TYPE-B KEYS)) (IS) (: (IF ((NO OFF(CE) (HAS BEEN ASSIGNED) TO (THE MESSAGE) FOR
("ACTION")) ((THE "ACTION" OFFICE FROM (THE KEY)) (IS ASSIGNED) TIJ (THE MESSAGE) FOR ("ACTION"))) (IF
((THERE IS) ALREADY (AN "ACTION" OFFICE FOR (THE hESSAGE))) ((THE "ACTION" OFFICE FROM (THE KEY)) (ISTREATED) AS (AN "INFORMATION" OFFICE))) (((LABEL OFFSI (ALL "INFORMATION" OFFICES FROM (THE KEY))) (ARE
ASSIGNED) TO (THE r.ESSRGE)) IF ((REF OFFSI THEY) (HAVE (NOT) (ALREADY) BEEN ASSIGNED) FOR (("ACTION") OR
("INFORMATION"))))))

((THE ACTION FOR (TYPE-I KEYS)) (IS) (0 (IF ((THE KEY1 (IS) (THE FIRST TYPE-I KEY ((FOUND) IN (THE
MESSAGE)))) THEN ((THE KEY) (IS USED) TO ((DETERMINE) (THE "ACTION" OFFICE)))) (OTHERUISE (THE KEY) (IS
USED) TO i(DETERMINE) (ONLY "INFORMATION" OFFICES)))))

Figure 3.2 Actual input for mesage processing example

, tl

SPECIFICATION ACQtJSITION FROM EXPERTS 28

bu SAFE then then distributed
rESSAGES RECEIVED FROMl THE AUTODIN-RSCiARE PROCESSED PFR AUTO.ICITIC ASSIGN..E1I

totaTesg

TH nSSG I DSRIUTDTOEAHOPU~~~to that message

4THE MESG FOR DITRIBUTE OE AC H .R I) EPLACE ALLLN EDA HSAE 2 EOL

ftmtx
ALPHAUIIERC CHRCES ES A D TENC)LUNTEALRDDNTSCE.

ITISNEESAR T EITTE EX PIFT~I~SAE

THE~~~~ AR FOrYE KY S FN O ACTION OFFIE HS BE ASSIG ET THE OFS I E H
ATINME OF OI E OF ~ A KES EDSRIBTED TO AN OFFIE FOR AFCTION F 11HER IS E OEA N

tot thet messagea
ISEOYE ASS INEO FOR ACTIO4 R FORtI ATIO

definitioof th textfgeag
THE KE FO EDTRIN HEE ACTIO (1FEPLCEALL LINR~E TEEYAIS USPE TO) SATRVE ONLY)

tetof themesg

* THE ATION FO YEOKY) FN CINOFFICESASBE.ASGE T H ESAE H

asignred33~-eiioi eiiniso tosag poese i
ACTIN OFICE "*ATE(bY13ASGE cot~TiO THo ilramminE sOTON.d\Iards)SALEYA

ACt3OFC O H ESGTEATO ilC FO H EtjjjREAE A)A NO-lTO

fo ky rinorato

OF IC A AL N O M T OaFI E R M T E K Y A E AS I N D T H .SA ~ I H Y H V O

SPECIFICATION ACQUISITION FROM EXPERTS 29

61111NEVER (receive message FROMI autodin-ast; BY safe)
(edit text OF message)
(search text OF message FOR (CREATE THE SET OF Keys))
(distribute-processtl message))

(d istribute-processll (message)
(FOR ALL offices WIHICH ARE (assigned office TO message FOR ANYTHING)

(distribut "process#2 message officel))
(distribute-processl2 (message of fice)

(FOR (fajnctionll (TRUTH-VALUE OF (assigned office TO message FOR action))
(TRUTH-VALUE OF (assigned office TO message FOR Information)))

TIMlES (distribute A copy WHICH IS A copy OF message AND located AT safe
FROMi safe TO location OF office)))

(edit (text)
(FOR ALL line-feeds WHICH ARE IN text

(replace line-feed IN text BY (CREATE AN ORDERED SET OF spaces)))
(Keep THE (union (CREATE THE SET OF alphanumeric c'~racters IN text)

Ffl (CREATE THE SET OF spaces IN text))
FRMtext)

(FOR ALL spaces WJHICH ARE IN text AND redundant IN text
(remove space FRO" text')

(WHENEVER (locate P key IN text OF message AT POSITION ANYfHING)
(CASE (type OF key)

(type-S (type-S-act ion message Key))
(type-I (type-I-action message key))))

(typo-S-action (message key)
(IF (NOT (EXISTS action office FOR mt-.sage))

THEN (assign THE action officell FOR key TO message FOR action)
ELSE

(treat action ofice#2 FOR key AS information officel2 FOR key
IN (IF (NOT (assigned officel2 TO message FOR action OR Information))

THEN (assign offlcei'2 TO message FOR Information))))
(FOR ALL office'3 WHICH ARE (assigned office#3 TO key FOR information))

(IF (NOT (assigned off ice*'3 TO message FOR action OR information)
THEN (assign off iceI3 TO message FOR information))))

(type-I-action (message key)
(IF key a (keyll WHICH IS (SEARCH HISTORY FOR FIRST

(locate typell1 keyll1 IN text OF message AT position R'dYTHING)))
THEN (determine THE action office FOR message

BY (type-a-action Message key))
ELSE (determine ONLY THE information office FOR message

BY (IF (EXISTS action office FOR message)
THEN (treat action officel FDAl key AS information off Ic*#l FOR Key
IN (IF (NOT (assigned officell TO message FOR action OR information))
THEN (assign office#l TO message FOR information))))

(FOR ALL officel2 WHICH ARE (assigned office#2 TO key FOR information)
(If (NOT (assigned offico#2 TO message FOR action OR information))

THEN (assign officol2 TO message FOR information))))))

Figure 3.4 Program created by prototype system

SPECIFICATION ACQUISITION FROM EXPERTS 30

APPENDIX

WHAT NATURAL LANGUAGE CONSTRUCTS ARE IMPORTANT
FOR PROGRAM DESCRIPTIONS

Natural language program descriptions seem to depend upon a particular model of *
the (relevant) world populated by objects of various types having ce; tain attributes which J
are relationships between themselves and other objects. This collection of objects and
their relationships can be classified as a model because the objects must obey certain
rules (both static and dynamic) that limit the allowed states the model can adopt. These
rules are the 'physics" of the model.

With such a model as a basis, a program description corresponds to rules for
forming sequences of actions that will guarantee that the model's behavior (as constrained j
by the physics) additionally meets some other criteria--the goal of the process. The
behavior is specified either as the final state of the model or as the succession of states it
assumes. The sequence formation rules are the analog of control statements in
conventional programming languages.

Thus, as a first approximation, a language suitable for natural language program
descriptions must be capable of definir, types of objects, instances of these objects with
specific attributes and relationsn;s with other instances, constraints on the allowable
states that the collection of objects can assume, actions which modify the objects and their
interrelationships, and rules for forming sequences of these actions to achieve some goal.
Such a language closely approximates the current notion of an abstract programming
language.

The natural language modei tiiffers from the abstract program model in two
fundamental ways: Fir ." n the natural language model, it is assLmed that any desired
information concerning the current or previous states of the model can be directly
retrieved from the model; thus all information is viewed as primary. Second, all the
cunsequences of an action are not specified as part of the action's description, but only
the portion directly relatea to the actions. The others can be derived from those
specified. These rules of information derivation are called inference rules, and they
permit the natural language model to ignore the distinction between primary and derived
information and to specify only the priimiary effects of an action. They also permit the
derivation of information to be decoupled from both how the information used in the
derivation was itself generated and how the desired information is used. They thus deal
sith the consistency of the mcdel in any state rather than the movement between states.
The task of maintaining the consistency of the state is transferred to the system through
these inference rules. Thus the natural language model must embody inference rules and

SPECIFICATON ACQUISITION FROM EXPERTS 31

must use them to maintain tne consistency of the model state as it is changed by actions.
Lking this natural 1i.nguage model as a basis, we can now discuss the three broad
categories--declarative, naming, control--of constructs which appear in natural language
program descriptions. I
Declaratgive Infoat~ion.

Declarative information is used to help the translator select the appropriate
interpretation of procedural constructs. Most of this information (such as t:'pe, relation,
constraints, and inference riles) has already been described above. The issues here are
that in natural language descriptions this information is mixed with the procedural
description rather than separated from it and the use of the information extends beyond
static characteristics to dynamic behavioral ones. Thus, constraints are often used to help
eliminate interpretations that will cause the constraint to be violated.

There is one additional type of declarative information, called expectations, not
already discussed. These are promises that certain things will occur or that the program
being described fits together in certain ways. For example [all the examples are drawn
from the program description in Figure 3.2]:

0 "The message is processed for distribution" - This sets up the expectations
that processing precedes distribution and that the processing produces some
results used by distribution.

As with the other declarative information, these expectations cdn be used to
eliminate possible interprvtitions which do not fulfill the expectations.

Naming Constructs

In programming languages variables are normally given unique names or--if names
are reused--precise scoping rules provide a unique interpretation. In natural language, on
the other hand, objects are almost never given names; instead, context in conjunction with
a naming construct provides a unique reference. Thus both a context mechanism and the
following variety of naming constructs must be provided.

A. Descriptive. A set of associations is given which uniquely selects a particular
object from those in the current context or the set of all objects of the
specified type. For example:

1*

SPECIFICATION ACQUISITION FROM EXPERTS 32

0 "The office assigned to the key for action" - If 1t is asumed that the
reference to "key" is unique and that only one office is assigned to that
key for action, then this descriptive reference is also unique.

B. Simple typed rcference. Only the type of the desired object is specified; the
resolution must be provided either by a unique instance of that type in the
context or by the operations performed on the object. For example:

0 "The message is distributed" - Context is used to determine that the
received message is the desired one.

0 "Replace all line-feeds" - Using the line-feeds (i.e., replacing them by

spaces in the text of the message) requires that the referenced line-feeds
be in the text. Thus only line-feeds in the text satisfy this typed
reference.

C. Approximate references. The stated reference doesn't specify the necessary
relations to determine thv desired object, which can be either explicit as in
the generalized prepositions below or hidden so that only a failure of the
referenced object to satisfy some usage criteria indicates the necessity to
reinterpret the reference as an appropriate reference to some closely related

object. Resolution of this type of reference requires both context and usage
analysis. Two broad subcategories are:

C1. Generalized prepositions. When a strong association exists between
objects, a preposition may sometimes be used in place of the
association to relate the objects.

* "The action office from the key" - The word "from" indicates that
some unspecified relation associates office, action, and key. In this
example, this association is the office assigned to the key for action.
The reference is then treated as descriptive.

C2. Hidden. Reference is made to an object when a closely related one (in
this case a subpart) is desired.

* "The message is then searched" - Although "message" is specified,
only the text portion has the appropriate attributes to be searched;
thus it is the intended reference.

D. Missing operands. In many situat xn operands tc associations or actions are
completely omitted from the natural language program descriptions. Such

SPECIFICATION AOUSITION FROM EXPERTS 33

omissions are possible only when the context and usage constraints are
strong enough to determine the reference, or w.hen the particular reference is
irrelevant or the entire class of possible referents is intended. In addition to
using such context and usage information, the omission must be recognized to

initiate these mechanisms; such recognition depends upon knowing what
operands are required for each association and/or action used.

* "The message is distributed to each assigned office" - The "assign"
association requires three operands: an office, a type of assignment
(either action or information), and an object being assigned to (either
message or key). Only one of the three--office--is specified. Thus the
object being assigned to is omitted and context is used to determine that
the message should be distributed only to those offices assigned to that
message. Similarly, context is used to determine that offices assigned for
either action or information (the only two possibilities) are intended for
distribution.

Control

As with naming, natural language program descriptions use sever-l control
constructs which do not exist in programming languages and which permit a very different
organization for these descriptions. Instead of a whole composed of highly structured and
tightly connected parts, as in programming languages, they form a loose confederation of
unconnected fragments held together only by constructive effort-, based on context and
usage.

This constructive effort is exactly that needed to transform the description into the
program control structure. It should not be surprising that the control structure has been
suppressed and dispersed in descriptions because these descriptions are intended
primarily for understanding, not execution. Program descriptions thus highlight the
processing for the normal case by presenting it first, followed by descriptions of any
exceptions and how these exceptions should be processed. They in turn are similarly
described, so that any exceptions to an exception will follow the description of that
exception.

The structure, then, of natural language program descriptions is that a fragment (a
piece of the description with internal conventional control structure) is followed (not
necessarily immediate!y) by a set of exceptions that specify the application criteria and
the processing (as a fragment) for those cases which satisfy the criteria. This is exactly
opposite to the order found in programming languages, in which all the special cases
precede the normal case. Details are similarly suppressed in a fragment to promote

SPECIFICATION ACQLIS!TION FROM EXPERTS 34

understanding, and the amplifications occur later in fragments which indicate what is being
amplified and what the amplification is.

Constructing the program control structure for a program description thus involves
integrating the fragmen's, which requires that the type of each fragment be identified as a
normal case, exception, or amplification specification. For each fraf~ment of the latter two
types, the fragment being modified or amplified must be identified (this is a naming
problem similar to those described above).

Amplification can be treated as substitutions for the named construct within the
amplified fragment. There a.e, however, two problems With exceptions. The first is the
relative ordering of multiple exceptions to a fragment. Normally such ordering is not
explicitly stated and must be determined by the type of overlap between the, applicable
cases and/or processing assumed in the modification. As part of this ordering problem, it

must also be determined (by a similar analysis) whether or not a case that satisfies the
criteria for an exception should then be tested against the criteria of other exceptions
and/or processed by the normal case. The second problem with exceptions is that the
processing to be performed might not be directly specified, but rather given as a
modification of or a similarity to already specified processing, which requires that a new
category of "editing" operations (such as bypas:, include, except, treat as, inhibit, enable,
etc.) must be understood and handled.

35

4.
PROTECTION IINA! YSIS

Rcsearch Staff: ConsuLtant: Support Staff.
Richard Bisbey II Gerald J. Popek Nancy Dechter
Jim CarlctedtDennis Hollingworth
Dale Chase

INTRODUCTION

The Protection Analysis Project is an ongoing research effort toward improving the
security of existing general-purpose resource-sharing operating systems by finding errors
in their protection mechanisms. This task has come to be called "protection evaluation."
The problem is of obvious importance in view of the investment existing systems
represent, their expected lifetime, and their insecurity. It is well known that current
general-puroose operating systems, due to their size and complexity, usually contain a
large number and variety of errors even after having been in service for years. These
include security errors--indicated by the fact that sk;llful penetration efforts directed
against these systems invariably succeed. The task of improving such systems is urgent,
since many are installed in governmental, commercial, and military environments in which
the requirement for security (in terms of the magnitude of losses from accidental or
intentional violations) is strong and immediate. These losses will be reduced in proportion
to the cost-effectiveness of the available error-finding tools.

/IPPRO/CH

There are several possible approaches to the elimination of protection errors in
general-purpose operating systems. Probably the most elegant and formal is the use of
program verification techniques, i.e., proving a program correct with respect to a collection
of mathematical assertions. To use program verification for protection evaluation, three
tasks must first be completed:

1. The protection policy to be enforced must be formal-zed.

2. The formalized protection policy must be proved complete and consistent.

3. The formalized protection policy must be translated into progrIm verification
~iissertions.

Program verification techniques would then be used to prove the assertions correct with
respect to the operating system code.

There are, however, numerous problems associated with the above apprnach First,

no one has been able to write the formal protection policy for an operating system, let

:1

PROTECTION ANALYSIS 36

alone address the problems of proving that policy consistent and complete and of
translating it into program verification assertions. Furthermore, current program
verification techniques are not powerful enough to handle the language constructs used in
contemporary general-purpose operating systems. Finally, there is the related problem
that contemporary operating systems are too large and complex to be considered as viable
candidates for verification.

Research is being directe; o the solution of each of the above problems. For
example, research is currently under way in formulating protection policy. Examples
include the "star -property" (Bell 73] and "data security" [Popek 761 Considerable effort
is also being expended to improve and automate program verification techniques* and to
develop programming languages for producing operating systems which are more amenable
to program verification techniques (Lampson 76]. Finally, research is being directed at
decreasing the size of existing systems [Schroeder 75] and creating systems based on
small kernels [Panel 74].

While an approach based on the use of formal techniques is desirable, the
aforementioned problems prevent their application to contemporary systems. What then
can be done? Two basic problem areas require attention:

1. Derivation of the policy against which the correctness of an operating system's
protection mechanisms will be judged.

2. Development of less formal evaluation procedures to compare the protection
policy with more immediately applicable operating system code.

The Protection Analysis project is addressing these problems in the following ways.

Derivation of Enforcement Policies

While it is not presently possible to specify a total protection policy, let alone verify
its completeness and consistency, there is a basis for empirically identifying elements of
that policy from observed protection errors in existing systems. Because protection
errors are, in fact, nothing more than violations of some protection policy, from a collection
of observed protection errors it is possible to derive the protection policies violated.

Identification of Evaluation Tools and Techniques

The second problem is to evaluate the protection ,iechanisms of operating systemswith regard to the derived policies. As stated previously, general-purpose program

verification techniques are not powerful enough to handle programs of the size and
complexity of contemporary general-purpose operating systems. However, it is possible
to develop for a single, specific element of protection policy a special-purpose evaluation
tool or technique.

*See Secton I of this report.

PROTECTION ANALYSIS 37

In summary, the ISI approach consists of deriving protection policies from known
protection errors and developing individual' search techniques capitalizing on these
policies. (For a more detailed discussion of the issues involved, see [Carlstedt 75].)

PROGRESS

During the past year, an analysis was completed of a collection of known protectio~l
errors in operating systems. The goal of this analysis was to categorize the errors as t)
type. As a result of the study, it was found that all of these errors fell into one or mort
of ten categories.

The remaining research effort has focused on the generation of operating system
evaluation procedures. The three error categories for which investigations have been
completed are: consistency of data over time; validation of operands; and residuals.
Research continues for other categories.

Cuonuteney of Da over Time

Operating systems continuously make protection-related decisions based on data
values contained within the system data base as well as on values which have been
submitted to and validated ay the system. In order for a correct protection decision to be
made (in the absence of other types of protedion errors,), the data must be in a consistent
state, i.e., the value or structure of the data on which the protection decision is made must
be in some specific relationship with other data in the system, and must remain in that
relationship during the interval in which the protection decision is made.

Protection Errors in Operating Systems: Inconsistency of a Single Data Value Over
Time [Bisbey 75] describes the general error type as well as a particular instantiation, i.e.,
those errors resulting from inconsistencies in parameters supplied to the operating
system.

Validation of Operands

Within an operating system, there are numerous operators responsible for
maintaining the system's data base and for changing the protection state of processes or
objects known to the system. Many of these operators are critical in the sense that if
invalid or unconstrained data are presented to them, a protection error results.

Protection Errors in Operating Systems: Validation of Critical Conditions [Carlstedt
76) investigates the validation of conditions attached to critical operators and their
operands, especially when those operands can be readily influenced by users. A
companion research report [Bisbey 76] describes a specific technique, Data Dependency
Analysis, for automatically finding data flow paths within operating systems, thereby
making it easier to detect errors of this type.

-A I1I' D

PROTECTION ANALYSIS 38

Residuals

A widey recognized error type is that of the "residual," i.e., information which is

"left over" in an object when the object is deallocated from one process and allocated to
another. Several types of residual errors exist, including

* Access Residuals. Incomplete revocation or deallocation of the access
capabilities to the object or cell.

0 Attribute Residuals. Incomplete destruction of the cell's context with other
cells or objects, and of old values within the cell.

Protection Errors in Operating Systems: AUocation/DealUocation Residuals
[Hollingworth 76] examines the sources of these errors and discusses strategies for them
in operating systems.

Future research effort will focus on the development of evaluation procedures for
finding other major error types.

IMPACT

The work described here in will have an impact in several areas, most immediately in
the evaluation of existing operating systems with respect to the reliability of their security
mechanisms. The empirical basis of the research makes it easy to incorporate new error
types and detection techniques should they be identified. The evaluation techniques can
also be used in computer acquisition as part of a set of standard tests for system
acceptance. Additionally, the data base of errors and error types is useful in the repair
or modification of existing systems; it could form the basis for a "best practics manual,"
i.e., a discussion of errors and problems that should be avoided in the design of future
systems and protection mechanisms. Finally, the analysis needed to derive eror types
and to develop associated error detection algorithms yields insights that contribute to a
deeper understanding of protection itself.

j
- !~-

39

RlEFERUEIS

[Bell 73) Bell, D., and L. LaPadlula, Secure Computer Systems: A Mathematical Model,
ESD-TR-73-278, Vol. 11, Novem~ber 1973.

[Bisbey 75) Bisbey 11, R., G. Popek, and J. Carlstedt, Protectcon Errors in Operating
Systems: Inconsistency of a Single Data Value Over Time, USC Information Sciences
Institute, ISI/SR-75-4, December 1975.

[Bisbey 76) Bisbey 11, R., J. Carlstedt, D. C~ ase, and 0. Hollingworth, Data Dependency
Analysts, USC Information Sciences Institute, ISI/RR-76-45, February 1976.

[Carlstedt 75] Carlstedt, J., R. Bisbey 11, and G. Popek, Pattern-Dtrected Pro.*ecrton

Ev.aluation, USC Information Sciences Institute, lSl/RR-75-31, June 1975.j

[Carlstedt 76) Carlstedt, J., Protection Errors in Operating Systems: Validation of
Critical Condttions, USC Information Sciences Institute, ISI/SR-76-5, May 1976.

[Hollingworth 76) Hollingworth, 0., R. Bisbey 11, J. Carlstecdt, Protection Errors in
Operating Systems: Allocation/De±llocatton Re.-tduals, USC Information SciencesI
Institute, lSI/SR-76-7, June 1976.

[Lampson 76] Lampson, B., J. Horning, P London, J. Mitcniell, and G. Popek, Euclid
Report, Xerox Palo AI'o Research Center, April 17, 1976, Draft.

[Panel 74) Panel Session--Security Kernels, AFIPS Conference Proceedings, National
Computer Conference, Vol. 43, AFIPS Press, 1974, pp. 145-151.

[Popek 76] Popek, G., and D. Farber, A Practical Example of Program Verification,
University of California at Los Angeles, 1976, submitted for publication.

[Schroeder 75) Schroeder, M., "Engineering a Security Kernel for Multics," Proceedings
of the Fifth Symposium on Operating System Principles, ACM Operating Systems
Review, Vol 9, No. 5, November 1975.

40

S.

INFORMATION AUTOMATION

Research Staff. Research Assistant: Support Staff:
Donald R. Oestreicher Larry Miller Katie Patterson
Robert H. Stotz

John Collins
John F. Heafner
Robert T. Martin
Jeff Ro.henberg
Ran Tugender
Dono van-Mierop
John J. Vittal

INTRODUCTION

The increasing sophisticat;on of weapons systems and decreasing time frame for

making decisions make it essentiai to provide the military commander better quality

information faster, even though manpower has been reduced by the conversion to
all-volunteer forces. With today's technclogy, messages can traverse several thousand
miles in fractions of a second, but hours are lost at either end, both in entering the
message into the communications system and in delivering it to the man who can act on it.

The IA project is studying the application of on-line, interactive computer
technology to the military message handling problem and is preparing an operational test
for a system designed to help solve the problem. On the basis of the ARPANET message
system experience, we are confident that such a service has a high payoff to the military.
Not only can formal message preparation and delivery become faster and more reliable,
but the processing facilities provided can also be put to new use; for example, with such a
service the status of a message is automatically available at all stages from preparation to
delivery. Much more detailed accounting and. auditing is easy to maintain, providing a
better understanding of the basic communication process. Entirely new facilities become
available as well: for example, using the message service to alert individual users when
certain events have occurred (e.g., "the message from Capt. Jones that you were
expecting has arrived"). Automated suspense files, calendars, etc. are also simple to
provide.

Perhaps the most important contribution of such a system is that it makes available

a secure, informal (off-the-record) message facility. This "electronic memo pad" is swift
and convenient to use and, unlike the telbphone, does not require the simultaneous
attention of sender and receiver.

The project is specifically directed to the military communication envirnnne.1t, and
even more specifically to nonexpert users. The most effective way to introduce such a!I

INFORMATION AUTOMATION 41

service into the military community is by means of an operational test at a military site,
which will serve a twofold purpose: It will demonstrate the utility of an on-line message
service in an environment credible and comprehensible to military planners, and allow
system planners to understand the impact of such a system on the user organization and
to evaluate the cost versus benefits of its various features. System buiders will obtain a
better understanding of the implementation and delivery issues.

BACKGROUND

Although the IA project actually began in tho fall of 1973, its roots reach back to a
five-week study, conducted on behalf of ARPA, of the military communications on the
island of Oahu [1]. This study was initiated at the reque.t of the Secretary of Defense for

Telecommunications as a part of a Navy program called COTCO, whose mission was to
consolidate and improve communications on Oahu. Until ARPA'S involvement, COTCO
advocated conventional data processing solutions. The ISI repo: t recommended a complete
island-wide interactive writer-to-roader message service electrically coupled to AUTODiN
(the military's backbone communication system); it was submitted by ARPA to DoD, where it
excited considerable interest but was generally regarded as too radical to be included in a
production system without a better appreciation of its cost and benefits.

Recognizing this, ISI cooperated with ARPA in developing a sensible military message
program and in making the case to the military establishment for the usefulness of a test
of an on-line interactive message service in an operational miitary environment. From
such a test one can learn what features are valuable, how the service is used, and how it
affects the way the uoer organization does its business. This information is essential for
long-range military communication planning and for proper implementation of production
systems.

By the summer of 1975 ARPA organized a separate program for military message
* handling. In December 1975 the effort culminated with the signing of a memorardum of

agreement between Commander-in-Chief, Pacific (CINCPAC); Commander, N',le'al Electronics
Systems Command (NAVELEX); Commander, Naval Telecommunications Command,

* (NAVTELCOMM); and Director, Defense Advanced Research Projects Agency (DARPA). This
memorandum calls for a test of such an experimental message service to be run at
CINCPAC staff Headquarters, Camp Smth, Oahu rhe experiment is designated to begin ,n
January 1977 ard to last for two years. Funding is to be shared jointly by NAVELEX and

DARPA.

INFORM/iTION AUTOMATION PROJECT

The IA project was started at ISI in the fall of 1973 with a twofold gna!: 1) toji develop the technology for providing on-line computer services directly to users who are

- • . I "' '" ',,t -o,. r- , ,, ,, ,, ., .,

INFORMATION AUTOMATION 42

neither specialikts in computer science nor spec;fically trained operators and 2) to develop

ar- on-line, interactive, writer-to-reader message service for the military community. The
two goals are in fact indivisible. The military action officers who send and receive
messages are not computer specialists. For the service to be useful, an interface must be
provided that knows a great deal about each individual's habits, thus making his use of the
service seem easy and natural to him.

The military have been users of an electronic message service for many years. At
each organization the service has always been handled as an over-the-counter bu-3iness,I .an outgrowth of its development from telegraphy. Over this long history much procedure
and policy has developed. It is the over-the-counter, manue! handling of messages that
the on-line service is designed to replace. This new system will bring a new style of
operation which will affect some of the old policy and alter much of the procedure. To be

a success, an on-line message service inust provide the improvements inherent in
automation without overly disrupting the traditional patterns and procedures that areknown to work. The manual nature of today's message service is somewhat cumbersome,

but it is extremely flexible; each command or organization is able to tailor its procedures
to its own needs. One of the unique goals of the IA message service is to provide this 'I
tailorability.

To adequately support military message handling the organizational structure of the
user canrnunity must be reflected in this service. For example, the rules about who can
access what message files and who can release what messages must be carefully modelled.
By definition, formal military message traffic flows between commanders of organizations,
even though the messages nearly always originate an4 terminate at much lower levels.
This necessitates special "coordination" or "staffing" procedures on outgoing messages
(which require approval up the entire chain of comm-nd) and complicates the distribution
of incoming messages. The IA military message service is unique in its dpproach to these
problems, making it possible to retain these formalisms to any degree found necessary in
the tests.

It is also necessary that the on-lira service be easy to use. It is certainly easier to
type "send for coordination" than to hand-carry a draft message around to each
coordinator. However, by automating this transmission we are faced with making the use
of terminas competitive with paper and pencil. Toward this end the IA project is
developing scanning and editing aids that currently do not exist. For instance, to facilitate
integration of comments and changes from several coordinators, the service offers the
ability to compare two versions of the same paragraph on separate windows of the CRT
screen, highlighting the differen.es by making the changed characters brighter.

The proposed IA message service is divided into two stages: preparation and
delivery. The former stage includes the creation of the draft message and the
coordination of this draft with other users until it is signed off for release. For this stage

Ni

INFORMATION AUTOMATION 43

the IA message service provides a special-purpose editing program which understands
message formats and checks that the contents o, the various fields are legitimate. The
editor is structured so that a coordinator's editing of a message is stored as a special
change file rather than as actual modifications to the original.

The iuthor of the draft mest.age conrrols the sequence and timing of delivery of the
draft to coordinators. The message cdn proceed serially or in parallel (or any combination
of the two). The author can have the message returned to him after each signoff (so he
can incorporate the changes), he can ask that he simply be notified after each signoff, or
he can let the coordination delivery proceed automatically.

Of!en a coordinator of a message wishes to obtain the opinions of others on his
staff before he signs off. The ;A message service allows the coordinator to "delegate" to
as many pe(;.le as he wishes the capabiliti to comment and edit the message (each
delegate edits from the origin.' and creates his own change file). If so inclined, the
coordinator may also delegaie the signoff responsibility, but this is restricted to a single
delegate only. The message service may retain all of this delegation information for audit
purposes. It is planned that this delegation facility will be extended to permit a user to
specify in advance the criteria for selecting messages to be delegated to others. The
service will then automatically perform the delegation whenever a message meeting these
criteria is .'eceived.

This coordination process can be iteraied as often as necessary, with each version
being coordinated independently. A major IA research goal is to learn more about the
staffing process and about how to structure the corputer-aided environment to enhance
the effectiveness of this coordination.

The delivery stage involves conveying the message to its ultimate recipients,
ari.hiving it, plus providing aids for the user to sort his messages, scan them, and file them
for later retrieval. The first step in this process is to determine distribution for the
message. Because of the military policy that all formal traffic flows between commanders
of organizations, it is necessary to employ complex procedures to determine the real
ultimate recipients. The IA message service extends the normal "one-pass" distribution
algorithms provided in current AUTODIN terminals (e.g., LDMX) to allow each user to build
his own automatic personal distribution determination. A special form of distribution
determination pro,,ided by IA, called Guarding, allows a user to specify criteria for
messages that are to be routed to the first "on-line" user on the guard list. This assures
that incoming message.; meeting these criteria will be delivered to a live person who can
act on it immediately.

In addition to determining the distribution of a message, it is military policy to ass:gn

one of the recipients responsibility for taking whatever actior is appropriate. The officer
assigned the "Action" may further delegate the Action to a suhs(dinate or -%v .all the
action" to some other more appropriate officer. The automated message service must
keep track of this action assignment unti such time as the action has been completed.

zI

INFORMATION AUTOMATION 44

A different form of special h3ndling offered by IA is the alerting mechanism, which
allows users to specify criteria for messages that will cause immediate action on the user's
screen when they are received. This will notify the user of the event immediately, if he is
on-line, or as soon as he comes on, if the event occurred while he was off-line. A further
advantage is that wherever he is he may get on-line via any available terminal.

Message selector criteria can also be applied to incoming messages to sort them into
"folders" for the user, which provides the electronic analog of file cabinets. Since the
message service can retrieve messages rapidly, these users' folders actually store only
citations to messages rather than the messages themselves, which reduces the computer
storage required to easily manageable size. The iA Message Service provides tools for
specifying "key words" which can be used for later r,:trieval of the message.

User Support

The S6RPANET experience provides ample evidence that computer scientists can use
on-line systems effectively with little or no formal training in their operation. There are
also many examples of systems used every day by nonspec'alists who have had intensive

training (e.g., airline reservation clerks). To be effective, however, a military message
service must be usable by non-computer people (action officers) with minimal formal
train ng. Few officers spend more than 10 percent of their time in message-related
functions; moreover, the present Lffort requires no specialized training. No on-line
message service will be used in the military if it is not virtually self-evident and highly
supportive whenever the user has any questions or difficulty. The IA project is focusing
on thic problem as a central research issue.

The approach chosen to provide the necessary support for the user who is not a
trained operator or a computer specialist is to interface him to the message service
through an "intelligent front-end process" which we call his "Agent." This Agent makes the
service appear consistent to the user. It is designed to handle all control procedures (e.g.,
editing, help, defaulting, error nandling, context mechanisms, etc.) in the same place and
therefore in the same way throughout all phases of the service. The lack of such
consistency is a major source of difficulty in the current TENEX message faclhties. The
Agent and its components are described in detail in i2, 3, 4]. Briefly, it consists of a
Command Language Processor, a User Monitor (with attendant background analysis
processes), and a Tutor,

Cormmad I.angunge Pror'essor (CLP). This serves as the interpreter fr-: usnr commands
operating from a dynamic input string and provides input editing func¢ioss and screen
control. To support ihe neophyte, the CLP has a strong emphasis ov; error detection,
recovery, and correction. It also acts as the driver for the rest of the Agent, calling in the
User Monitor and the Tutor when appropriate. The CLP operation is affeted b, User
Profilo data which provides information unique to each user.

~-

INFORMATION AUTOMATION 45

User Monitor (UN) and Analysis Peekages. The User Monitor collects data on user

performance and provides the User Profile data used by other parts of the Agent (Tutor
and CLP). Analysis programs process user performance data to test hypotheses and
modify the User Profile.

Tutor. This provides intelligent help to on-line users by explaining commands, reporting
errors, introducing new features, and providing refere'nct documentation. Tutor operation
is also affected by the contents of the User Profile.

The Agent is designed to collect specific data about the user's use of the ser,ice, to
pmake certain analyses of that data and, on the basis of the results, to recommend changes

in the way the user deals with the service or the way the service looks to him. After we

have gained actual user experience, we fully expect to have to change the nature of the

data collected, the way it is structured, and how it is analyzed. In this process, however,
we expect to learn a great deal about the critical parameters of a man-machine interface
and how to control them to maximize the user's performance and satisfaction.

Reliability

Resilience of the service is an important aspect of a message s,-rvice. The 'A
design calls for a distributed process across multiple host processors with redundant
copies of the service's basic files dispersed among the hosts. If any one host is not
operating, any user can then still be served. Since the processes are distributed, a user
does not need to run on the machine which stores his files.

In order to make this work, file naming conventions must be coordinated to insure
system-wide uniqueness. In the IA message service design there are three distributed
processes, each of hich controls a separate data base. The Coordination Daemon
controls all messages in preparation; the Transmission Daemon controls all messages that
have been released; and the User Daemon controls all user personal data files. Every host
involved in the service has a copy of each of these daemons. When a user logs on, he is
assigned to a host by the User Daemon. That host's daemons retrieve his personal files
and then start up a job for him. This user job talks to the daemons for all its subsequent
message file accesses. This distrlbuted nature of the IA message service with redundant
file storage provides the robustness required for a military environment. (Because of the
cost implied by such a distributed service, this aspect of the IA Message Service design is
not being implemented for the Oahu experiment.)

Securiiy

Another important requirement for this message service is that it ,'eet miitary
security specifications. Although this test system will be operated at system high (i.e., all

INFORMATION AUTOMATIOi 46

users are cleared to the highest level the system will carry), with access restricted to TS
personnel, it is a test objective that the message service address the security issue
directly in its design principles. Previous research done by MITRE has identified the
attributes that a system must possess to meet this criterion. The challenge is to build the
service in such a way that someone can verify that the program indeed does have these
attributes. The current state of orogram verification will not handle programs of the size
and complexity of the IA system.

The approach being taken is to concentrate all of the security-relevant code in a
single, small module (a security kernel). If it can be shown that this kernel does indeed
handle all the security issues, the rest of the code does not need to be verified. The
project schedule does not have time to actually verify this kernel, but the system is being
designed with a kernel in it, which--given the proper effort--could be verified. The
TENEX operating system, on which the message experiment will be run, is being altered to
reflect military security, and is assumed to be a part of the kernel.

Privacy (discretionary control of message access on criteria other than security
level) is another major concern in a message service. The principal difficulty here is in
eliciting from the military a reasonable statement of what the rules should be. "Need to
know" is a highly judgmental quality and very difficult to model. The IA project plans to

embody access control mechanisms general enough to be applied to a broad set of models.

The service will s-ipport author-assigned access control to annotations associated with
messages and to personal files.

Scalability

In ihe COTCO study it was learned that during the average day on Oahu, 6,000
formal AUTODIN messages are sert out and 15,000 messages received. To insure that
received messages get to the appropriate people an average of 40 copies are distributed.
The CINCPAC communication center devotes a 24-hour-a-day printing press to this
function. To handle traffic of this magnitude in an on-line system, it is necessary to
organize the messages as efficiently as possible; for example, when a message is
"delivered," instead of making a private copy for each recipient (as is done with current
ARPA message services), the IA system delivers a brief "citation" to the message. The
user is then granted read-only access to these central copies when he wishes to read its
contents.

Other design decisions in the IA message service also reflect this concern for
scalability. The organization of user files is also done by a central process (User Daemon)
to compact them as much as possible. In this way, data relevant to many users can be
kept in the same TENEX directory rather than requiring a directory per user. The
daemons are distributed processes that operate across multiple hosts on the networ', so
that the service can grow in 3 straightforward way by expanding the subnet (more nodes

and more links) and adding more message processors.

INFORMATION AUTOMATION 47

Terminals

A significant part of the IA project is devoted to providing good human engineering
to the military message service. For the traditional action officer to accept it, the service
must be easy and simple to use; the cutting edge of this problem is his interaction at the

CRT terminal. We believe it is therefore cr;tical to provide two-dimensional editing with
instantaneous feedback of trivia! operations, as though the user's keystrokes actually
performed the operation (insert a character, delete a character, move cursor, scroll,
identify a cursor location as being data of interest, etc.). Other more complex operations
are deztdt with as commands to the system Agent. For these, indication that the command
has been input should be instantaneous, but longer delay in actuai performance of the

action is acceptable.

For a message service test in which users are separated from the supporting host

by a network, it is difficult to supply the necessary speed of response unless processing
is done at the terminal site. With this two-stagc architecture in mind, IA has designed a
front end process (called Terminal Control) as a separable module for handling actions
local to the terminal. Terminal Control will be put into a microprocessor which is to be
provided as part of evch CRT terminal on Oahu (see the final subsection of Section 7 for

details of this development).

The Military Mesage Experiment

As described earlier, the principal focus of the IA project is on the test to be run at
CINCPAC Headquarters in 1977. There are currently two other message services (being
built by BBN and MIT) addressing this same test, although only one service will eventually
be used for the operational test. In addition there is a PDP-l0, communication equipment,
and terminals to be procured, installed, and maintained. For cost considerations a team
from MITRE and NRL (this will be a single-host test) is overseeing the security designs of

each message service, while another individual is working on training requirements. A
different group from MITRE is developing a Test Plan for the experiment, including the
determination of data collection requirements and analysis to be conducted.

As a part of the Test Plan development MITRE has generated a Concept of
Operations, which describes in detail the operation of the specific community of users that
has been selected for this test, Operations Directorate (J3).

PROGRESS TO DATE

During the past year progress has been made on four fronts: understanding the
user and his environment better, developing and presenting the plan for the Oahu

INFORMATION AUTOMATION 48

experiment, developing the software for the IA message service, and developing the
terminal for this test.

Understanding tAhe Usor

As this test has been slowly taking shape, the selection of the ultimate user
community has been narrowing, until late this spring the J3 staff at CINCPAC was selected.
MITRE personnel have spent time observing the operation of this group and have fairly
well identified the operations these users currently perform in their message handling.
From these, MITRE has abstracted a set of functions which the message service should
support. Some of these are general-purpose in nature, while others are highly specific to
this community. The general functions called for match quite well those stated as design
objectives of the IA design in various earlier documents (5, 2, 6].

Another aspect of understanding the user involves providing the optimum language
for him to communicate with the system. In 1974 (3] a methodology was outlined for
selecting and improving this language. This methodology (which we call protocol analysis)
was tested in 1975 (7] using a selection of computer scientists as subjects. In February
1976, a protocol analysis test was conducted in Washington D.C. using 21 subjects from
various naval commands (NAVELEX, NAVTELCOM, NAVCOMUNITWASH). These subjects
included senior naval officers, engineers, enlisted personnel and secretaries. The results
of this test were published in May (8] and revealed interesting valu.nble data. The test
served to ascertain how the users wanted to be able to use the system, how they wished
to phrase instructions to the system, which functions they used most frequently, what
vocabulary they employed, and so forth. It also helped in identifying many necessary
functional requirements of the service (e.g., by clarifying the overall structure of the
message operation and the interaction of its parts). Since the nature of formal
communications within NAVELEX and NAVTELCOM appears to be different from that in the
Operations staff at CINCPAC, in July of this year a protocol analysis will be conducted on
Oahu using a representative sample from the eventual community of users in order to
understand their specific needs.

Developing the Plan for the Experiment

Since ISI has been involved in this ARPA program from its inception, it has
participated to some degree in many phases of its planning. In January ,975, the IA
project produced an informal report to ARPA and NAVELEX called Mdttary Message
Processtng System DesLgn which outi'Mes our ideas of how a test plan should be organized
and what it might contain. Since then MITRE has been contracted to develop a formal test
plan, and the IA project has reviewed and critiqued the various drafts of that document as

it has evolved. I
A

iA

INFORMATION AUTOMATION 49

In order to assist ARPA and NAVELEX in planning for this experiment, the project
ha produced a number of reports and documents during the past year, including a
recommended TENEX configuration, a study of potential systems for use as the data
concentrator for the test, a specification of the functions and equipment required for that
data concentrator, and several PERT charts for the system integration for the experiment.
The recent Pttention to security has required IA participation in joint discussions with the
other message service developers and the security control team from MITRE and NRL
From these discussions each service is developing its own approach to handling security.

Message Service Developmene

During the past year the IA message service has gone from a design on paper to a
near operational system. From the start the service has been divided into two major
phases.: Phase I involved development of the Agent and the creation and coordination
aspects of the message service; this has required bringing up at least skeletal versions of
all the basic modules of the service. Phase 2 covers the message reception, archival, and
retrieval features of the service. Phase I is nearly complete, and Phase 2 is under way.

The parts of the Agent developed 'his year include the Terminal Simulator, the
Command Language Processor, and part of the Tutor. The terminal simulator is
code-resident in the PDP-10, which is designed to make the HP 2640A look to the user
and the rest of the service like the new terminal. It provides multiple windows, with
independent scrolling, local editing, and function keys. This simulator is necessary until

the new terminal is ready.

The Co)mmand Language Processor (CLP) does the command interpretation and makes
appropriate calls on the functional module. The CLP is table-driven, making the addition of
new or altered commands straightforward. The CLP controls a two-line "command
window" on the screen; it provides spelling correction and automatic completion of
commands and arguments. All lexemes handled are compared to a synonym lexicon before
being parsed, allowing flexible substitution of values.

A help facility is being developed as the first part of the Tutor. It operates on
syntactical entities (terms the user wants to know about). A menu is provided from which
the user selects the nature of information he wants and the level of "verbosity" of the
answer.

The functional aspects of message creation ond coordination are provided by the
Functional Module and the Message Access Module of the user job and the Coordination
Daemon. The Access Module deals with the message as it is stored on file by the system.
The Functional Module converts the commands from the CLP into appropriate calls on the
Access Module and displays the results on the terminal, through a submodide called the
Virtual Terminal. The Access Module shields the Functional Module from the detailed file

. 4 -.. . ..

* *,,*~,.

INFORMATION AUTOMATION 50

representation of the structure of a message. The Virtual Terminal shields the Functional
Module from details of the terminal characteristics.

The VT, FM, and Access Module currently support creation and coordination of a
message. An originator drafts a message, adds comments to fields as desired, fills in the
Coordination field with user names, and then sends it for coordination. The message
coordinator may then edit the message and add comments of his own. In addition, he may
retrieve lower level intormation such as precede,,ce assigned to the message review, and
whether he has been asked to sign off or ju' t edit and comment on the message. A
coordinator may start a sub-coordination list fif his own. The author may then compare
coordinators' renditions with his original, or with each other, via split screen display.

The Functional Module is associated with each logged-on user. The Coordination
Daemon controls the central messages-in-progress file, where all messages being created
or in coordination reside. When a drafter originates a messag,, or a coordinator adds his
changes and comments, this process controls writing the update into the actual message
file itself. In addition the daemon sends out citations to users when they are due to be
notified of a message ready for review. Currently the Coordination Daemon allows just a
single user access to a message at one time. Although it generateb citations for messages,
the reception phase of the system cannot handle them beyond alerting the user of their
arrival.

MeIsage Transmission

When a message has been reviewed appropriately it is released for transmissions.
The Coordination Daemon irunes off the excess renditions, all comments, and the
coordination list, and passes the message to the Transmission Daemon. This process is
responsible for formatting and sending the resultant message to its destination.
Eventually for the message experiment this will be the LDMX and AUTODIN. At this time
the message is formatted as an ARPANET message and given to the TENEX Mailer process.

Messages received from the LDMX will likewise be processed by the Transmission
Daemon and converted to the IA internal form. Recipients will then be sent citations for
these messages and the Functional Module of user jobs accesses the message in a similar
manner as a message in coordination. Currently ARPANET messages are processed in this
manner.

Message Reception

Message reception on the IA system centers around the concept of file folders.
Initial citations to messages arrive from the daemons and are placed into a "Pending"
folder, somewhat like a person's in basket or mail box. From the Pending file, messages

, I I f' l -" I .. I
'

, .,'. T '' , ,, "-, ': ,
'
. ... - t= --' "... .. .,.-' -' ". ..

INFORMATION AUTOMATION 51

may be moved into personal folders or to more generally accessible folders--analogous to
read boards or bulletin boards. Although the user thinks in terms of folders holding
messages, in fact only limited message data is stored. From this limited data, the full
message may be directly retrieved.

The handling of folders is done much like message handling--through a special
Folder Access Module that isosates the Functional Module from having to know much about
the internals of this file representation. The Folder Access Module is being coded at this
time.

Folders have a nui-ber of special fields which dictate how their entries are handled.
One field is an automatic input filter which allows messages to be automatically filed
without explicit user intervention. A Template field specifies what fields of the message :

are stored for this particular folder and what fields or parts o. fields are displayed when
the contents are examined. Thus the folder may store key words and the To field of each
message, but not necessarily display these to the user, These fields can then be used for
retrieval.

CONPIINUING WORK

The IA project has a goal of having an operational m.essage service, including

preparation and reception phases, by the end of November 1976. A set of functional
requirements have been established by the Test Director for the /iiitary Message
Experiment. The IA message service will meet the majority of these requirements by that
time.

During the subsequent four months, the message service will be shaken down using
the Oahu host computer, live LDMX traffic, the new CRT terminals, and friendly military
users. During this period user documentation will be completed and test data colection
routines will be incorporated into the service. Additional terminals will be built and
delivered.

In the spring of 1977, the emphasis of the project will shift from development and
shakedown to training, evaluation, and upgrading. It is anticipated that a number of
specific "structured" tests will be conducted to evaluate specific features of the service.
During this period it is anticipated that an ISI representative will be on-site with the users
to assist in training and tailoring the service to the users' needs.

By approximately July 1977 the formal operational message service test will begin.
By this time the principal focus of the project will be on user and system support and on
data collection and analysis. Since this will be the first time unbiased users will be
operating the system, this will be a primary opportunity to study the effectioness ot the
agent in supporting the nonspecialist user.

................................

I

INFORMATION AUTOMATION 52

REFERENCES

1. Ellis, T. 0., L Gallenson, J. F. Heafner, and J. T. Melvin, A Plan for Consolidation

and Automation of Military)elecommunicatioas on Oahu, ISI/RR-73-12, May 1973.

2. Rothenberg, J. G., An Intelligent Tutor. On-line Documentation and Help for a
Military Message Service, ISI/RR-74-26, May 1975.

3. Heafner, J. F., A Methodology for Selecting and Refnin Man-Computer Languages
to Improve Users' Performance, ISI/RR-74-21, September 1974.

4. Abbott, R. J., A Command Language Processor for Flexible Interface Design,

ISI/RR-74-24, September 1974.

5. Tugender, R., and D. R. Oestreicher, Basic Functional Capabilities for a Military

Message Processing Service, ISI/RR-74-23, May 1975. I
6. Rothenberg, J. a, An Editor to Support Military Message Processing Personnel,

ISI/RR-74-27, June 1975.

7. Heafner, J. F., Protocol Analysws of Man-Computer Languages: Design and

Preliminary Findings, ISI/RR-75-34, July 1975.

8. Heafner, J. F., M. D. Yonke, and J. G. Rothenberg, Design Considerations for a
Computerized Mcssage Service Based on Washington, D.C. Navy Personnel,
ISI/WP-1, May 1976.

53

6.
NETWORK SECURE COMMUNICATION

Research Staff: Research Assistant: Support Staff:
Danny Cohen John Kastner Nancy Dechter

Thomas L. Boynton George Dietrich
Stephen L. Casner Oralio Garza
E. Randolph Cole Clarence Perkins
James Koda Leo Yamanaka
Eric Mader
Robert Parker
Paul Raveling

INTRODUCTION

Modern military command and control techniques have created a critical need for

secure, low-bandwidth voice communication systems which maintain high speech quality,

operate in real time, and permit full duplex (simultaneous in both directions)
communications. Such systems should ultimately provide the capability for conferences
between many users at multiple sites, with an efficient means for controlling the

conference. If these systems are to be fully secured, digital communication techniques are
necessary and must be developed.

Another trend in military communications is the use of packet-switched computer
networks, such as AUTODIN II, for data communications. Beginning in the 1980s, a large
portion of the military computer communications load will be handled by packet-switched
networks, made up of telephone, radio, and satellite links. A capability for secure voice
communications over packet-switched networks would provide an efficient, cost-effective
response to much of the secure voice communcations problem, including conferencing.
The high ratio between peak and average data rates for voice communication makes a
packet-switched network an ideal communications medium.

A primary objective of the ARPA Network Secure Communication (NSC) effort is to
demonstrate the feasibility of secure, high-quality, low-bandwidth, full-duplex digital voice
communications over packet-switched computer communications networks. Much of this
objective has bean accomplished using the ARPANET, which has been the model for both
military and commercial packet-switched networks.

BACKGROUND

The ARPA NSC effort has been in progress since late 1973. The initial tasks were
to specify a ;iigh-quality low-bandwidth speech compression algorithm, select a high-speed
signal processing computer which could execute the algorithm in real time, and select a
host and operating system to interface the processor to the ARPANET.

NETWORK SECURE COMMUNICATION 54

Linear Predictive Coding (LPC) was selected as the high-quality low-bandwidth
speech compression technique because it seemed to represent the best tradeoff between
computational complexity, bandwidth, and quality. The specific algorithm chosen was a
Markel autocorrelation-type LPC of order 10 using SIFT (Simple Inverse Filtering Tracking)
pitch extraction (MARKEL 721, (MARKEL 74]. The LPC vocoder extracts 12 parameters

from a 9.6-millisecond trame of speech: pitch, gain, and 10 k-parameters (often called
reflection coefficients). The 12 parameters from each frame are encoded into 67 bits.
About 52 frames per second are transmitted, giving a transmitted bit rate of about 3500
bits per second. Nothing is transmitted during periods when the speaker is silent. This
system, called the Phase I system, is a fixed-rate, fixed-order system; it is full-duplex
(simultaneous analysis and synthesis of speech).

I In 1973 a complete survey of high-speed signal proce-sing computers was made,

and the Signal Processing Systems SPS-41 was selected to be used by the NSC group.

The SPS-41 is a 16-bit integer machine capable of 4 million 16-bit integer multiplications
per second, but with limited program and data storage and wire-wrapped construction.

The PDP-11 was chosen as the host for the t.PC system, running cnder the ELF
operating system developed at Speech Communications Research Laboratory (SCRL). The
PDP-I I is to act as a host on the ARPANET and control the assembly and disassembly of
packets, input and output to and from the SPS-41, and the operation of the SPS-41
itself. It should be noted that not all NSC group members used the SPS-41 or PDP-I1;

Lincoln Laboratory first used the TX-2 host and FOP signal processor, and later used a
PDP-i I with a Lincoln Digital Voice Terminal signal processor, while Culler-Harrison, Inc.
(CHI) used two machines of their own design.

With the hardware chosen and the algorithm defined, the next step was twofold:
formulation of a Network Voice Protocol (NVP) and implementation of the LPC system on
the SPS-41/PDP-11 combination. Preliminary specifications for the NVP were issued in
June 1974 and final specifications in October 1974. Since implementing the LPC system
would be a time-consuming task, it was decided to test the NVP initially using CVSD
(Continuously Variable Slope Delta Modulation, the DOD "standard" high-rate vocoder),
which is particularly easy to implement. Therefore, in September 1974, an 8-kilobit CVSD
system was used to test early versions of the NVP; this great'y aided in the operational
development of LPC, revealing several problems with higher-than-usual data rates on the
ARPANET which were quickly corrected. The first CVSD tests were held between ISI
(using the SPS-41/PDP-11 system) and Linco!n Laboratory (using their FDP/TX-2 system).
This was a critical test for the NVP, since the systems were quite different.

After encountering many SPS-41 design problems, ISI brought up LPC on the
SPS-41/PDP-11 combination in March 1974. In January 1976 the first LPC tests were run
on the ARPANET, between Lincoln Laboratory and CHI. Again the hardware on both ends
was completely different. The ARPA LPC system met all its specifiration. and
demonstrated that the combination of low-bit-rate speech and a packet-switched computer
network was an effective one.

ai

NETWORK SECURE COMMUNICATION 55

The next step in demonstrating the usefulness of digital speech on packet-switched
networks was to implement a conferencing system. To do this it was first necessary to
expand the NVP into a Network Voice Conferencing Protocol, or NVCP [COHEN. This was
done, and oni January 23, 1976, a four-way digital conference was held among IS, Lincoln
Laboratory, CHI, and SRI, using the standard Phase I LPC algorithm. SRI used software
written by 1SI and modified slightly for their system, with ISi's help.

In 1975, in parallel with the network LPC conferencing system, ISI developed Z
sophisticated local CVSD conferencing system, called MA-BELL, for experiments in practical
digital conferencing within the Institute. In addition, MA-BELL is serving as a development
vehicle for the development of a convenient, human-oriented user interface for digital
conferencing systems. Future plans include expansion of the CVSD conferencing so that
participants can also be connected via the ARPANET.

In all of this, IS's NSC project has acted in the role of coordinator among the
contractors. The NVP and the NVCP were originally drawn up at ISI, then modified into
final form in discussions with the other ARPA NSC sites. The SPS-41 LPC analysis and all
the PDP-1 1 support software were writtcn at ISI.

Acknowledgments

Throughout the ARPA NSC effort, the cooperation between the NSC sites has been

truly exceptional, as has been the guidance of the ARPA program management. Progams
and hardware designs have been freely exchanged. For examole, the SPS LPC analysis
was written at ISI, except for the matrix solution subroutine SOLVE, which was written by
BBN, and synthesis was written at SRI. Support software for the networK voice system
came from ISI, BBN, SCRL, and SRI. Technical consulting came from SCRL, BBN, Lincoln, and
Utah. Lincoln, CHI, and SRI cooperated fully in b inging up the system.

APPROACii

The primary objective of ISI's approach to Network Secure Communications has been
t,% develop systems and techniques which are as generalized as possible. The NSC
low-bandwidth packet speech system is not specific to any one vocoder, such as CVSD or
LPC, or to any one packet-switched network, such as the ARPANET. Of course, some
portions of the system must be specific to the vocoder or the network in use; however,
these portions are either encapsulated in modules, such as in the LPC vocoder drivers, or
could be e,,sily adapted, as in the network control routines.

NETWORK SECURE COMMUNICATION 56

The ISI NSC project has implemented a conferencing system, called MA-BELL, which
is presently based on CVSD and operates locally between several cffices at ISI. In the
future it will be expanded into a transnetwork conferencing system. Figure 6.1 illustrates
a conference with four users, one of whom acts as the chairman. The system control
panel is shown in the center of the figure, with three users using CVSD vocoders plus a
control box, an~d the fourth using a standard pushbutton telephone.

MA-BELL can handl- ,evera, participants, in either a point-to-p,int or a
conferencing mode. Each user may communicate via a CVSD vocoder (three are shown in
Figure 6.1) and a control box (see Figure 6.2), or via any ordinary telephone equipped
with a pushbutton pad. In the latter case, the phone's pushbutton! serve as the control
panel. Th;- purpose of the control panel for the ordinary participant is to c..er or leaveL the conference, ask for or relinquish the floor, enter a vote, etc. The roairman's own
control panel, in addition to those functions, can control the entire conference, assigning or
reassigning the floor, inviting participants, initiating a vote, etc.

The chairman can also control the conference from the system control panel, SCP.
The SCP shows all the available information about the participants, including a graphic
display of the connections between the participants, who has the floor, which participants
have expressed a wish to talk (and are queued), whether the current speaker has been
warned that he is about to lose the floor to the next speaker, status of open votes, and
other functions.

Conferences are initiated by the chairman, who issues the conference-ID and the list
of parties allowed to participate. Thereafter each participant may join by "dialing" the
right sequence, which inc-des the conference-ID. As long as there are only two
participants in a confere"se (the chairman and the first "joiner"), no conference discipline
is enforced and both can talk to each other just as they could over a regular
point-to-point connection; when the third participant joins in, however, the conference
discipline is enforced and the participants can be heard only when they have the floor.

The floor assignment is either manual--by the chairman--or automatic. The
automatic schedule, which is currently that most frequently used, takes the floor away
from the curra nt speaker 15 seconds after a request is made by another user of equal or
higher priority. The current speaker is warned 5 seconds before he loses the floor.
Inside ISl the participants usually have the same priority. The "behavior" of the
"scheduler" can easily be modified by changing the parameters involved and the priorities
assigned to each participant.

Control output to the participants (like "you may speak now," "you ha 'e lost the
floor" etc.) are issued both by light signals to ihe control boxes and also vocally (by use

; Aerecorded messages). Controlling a conference can be done better and more easily
from the SCP thar from any other station, because all the information about the state of
the conference is gr .phically displayed in an easy-to-read and axiomatic fashion.

NETWORK SECURE COMMUNICAPT'.., 57

Key 4eatures of this approach to packet speech are

" Separation of control messages from data messages.

" Robust performance in the event of lost messages.

" Elimination of the possibi!ity of deadlocks.

" No end-to-end retransmission of data.

- Dynamic adaptation to changing network performance.

" Sufficient guaranteed bandwidth for speech with minimum delay.

i Support of a flexible, human-oriented user interface.

All of these approach guidelines have been and are being followed throughout the
NSC project, although a few are very difficult to achieve in actual practice. For example,
dynamic a}aptation to changing network performance will reoui:e additional work in the
network measurements area, leading to better short-range measurements, before a trult
dynamic packet spaech system can be achieved.

A similar approach has been used in the choice and implementation of the vocoders.
The most important consideration was the highest possible speech qu'lity at relatively low
bandwidth, which led to the choice of LPC. While the present Phase I LPC system
operates with - fixed output rate whenever the speaker is speaking, the Phase II LPC
system currently being implemented operates with a variable o'tput rate depending on
the speech itself. The latter system will exhibit a higher peak rate with a considerably
lower average rate than the former, a feature which is particularly compatible with a
packet-switched network.

In addition, the CVSD vocoding technique was also used, not because of its features,
but because CVSD was chosen by the DOD as its standard "high rate" vocoding system.

PROGRESS

Conferencing System

Most vocoders in use are not linear in the sense that the output bit streams

an cannot be added in any meaningful s(nse. Therefore, a participant with only ore vocoder j
can listen to only ore speaker at a time. This does not allow the "common air" as in a

normal phone conference, and creates a need for conference control. Therefore, the
central issue in conferencing is the control of voice data flow and of controi information
f low.

NETWORK SECURE COMMUNICATION 538

p.p

Marto C,)19 Photos

Ftgure 6.1 A conference ustng the IS! con feret...ing system

NETWORK SECURE COMMUNICATION :9

Iklart Coale Pholos

Figure 6.2 Two generatws of control boxes

The chairman has two main functions: scheduling (floor control) and directing the
speaker by talking privately to him wh e he speaks. The chairman has an open line to the
speaker at all times. This allows tne chairman to guide the speaker with comments like
"Please summarize your position, since I am about to take the floor from you."

The voting process allows a user to vote (yes or no) without being poled or having
the floor. This is useful not only for voting but aiso for questions put forth on the floor
like "any comments"', "any questions?", etc., since it saves the tedious polling which is
otherwise necessary.

In the future, the chairman will be able to direct that the conference or portions of
the conference be recorded. This will provide an on-line conference transcript, which
acts like any other conference participant. All participants in the conferen,e will be
informed that the conference is being recorded. Additional safeguar(-, such -s allowing
transcription only after a unanimous vote of the participants, could also t , implemented.

The Network Voice Conference Protocol (t'CP'

The conferencing feature of NVCP is based on the fcllowng model:

* Each participant has only une vocoder and therefore can listen to (only) one
speaker at a time.

NETWORK SECURE COkkIUNlCATION 60

o In each "station" (i.e., host) participating in the conference, there is a process

controlling the access of all the local individuals ("extensions," "part;cipants")

involved in the conference. This process is called the "oca! conference

controller" (ICC).

o There is one conference chairman, either one of the participants cr a program

(co-located with one of the participants), which decides who is listening to whom

and when.

o All the conference handling is in addition to the regular NVP procedurss.

The Network Voice Coiference Protocol is only a control protocol, making use ol the

same data protocols as used by the NVP. In fact, NVCP is defined as an extension to the

fKVP co,,trol protocol.

It is most important to realize that the NVCP per se does not address the issue of

the man/machine communication either between the participants and the LCC, or between

the human chairing the conference, .f any, and the CHAIRMAN program controlling the

conference. This issue is an implementation issue and does not belong to the protocol;

however, some recommendations for the mar/machine interface are incluaod with the NVP

protocol.

The conference ssructure. During a conference two logical networks exist: the first

is a high-bandwidth network carrying the voice data from the speaker to all the other

participants; the other is a low-bandwidth network carrying control information between

each participant and the conferince chairman.

The first logical network, the data (or voice) network, is dynamically modified as the

different users become (and cease to be) the speakers. Whenever a participant receives

the floor (i.e., becomes the new speaker), the data network is reronfigured ', allow data to

flow from this participant to all the others.

In contrast to the data net',tork, the control network has a static structure, since the

conference chairman does not change during the duration of the conference.

Two alternatives were examined and compared: one was to treat each individual

participant separately from the othert in the same site; the other wis to group all

participants in the same site for optimizing of the network utilization. No advantage,

except simplification of some programs, seems to justify the first possibility, and the

advantage in optimizing network utilization resulted in the decision to group all

participants at the same site together.

Two possibilities were considered: negotiation with the chairman once per

participant, or once per host. The ;atter was chosen for better efficiency.

NETWORK SECURE COMMNICATION 61

Two data traffic patterns were compared, one from the current speaker to all other
sites, and the second f-om the speaker to the chairman, then to be distributed to all sites.
The first provides better network utilization and "maller delays. The second is simpler,
since the data network does not ct'ange during th- conference as required by the first
method. Again, it was .'ecided to sacrifice a littl.a simplicity for the sake of network
utilization.

The user interface mpported by the NVCP. The NVCP can support a user interface
which allows the user to do the following:

" Define a conference (with optional participants list) to be chaired by this user,
or by any other partic!pant at the discretion of this user.

" Join a conference chaired by another user (dialing).

* Request the floor.

" Relinquish the floor.

" Perform several functions whose meaning is defined at conference time (e.g.,

voting, "yes" and "no").

" Terminate his participation.

The user interface will also allow the system to tell the participant

* That he is "in"/"out" of a conference.

" That he may or may not talk.

" Several functions to ", issigred at conference time (e.g., "You have two minutes
to finish talking").

The conference organization. A conference starts when the chairman tells his
system that he wants to initiate a conference and defines the participants list. At this
stage, a conference chairman control program is im.tiated.

Whenever a user wants to participate in a conference, he contacts the chairman (via
the LCC) and discusses !t with him (using the NVP negotiation procedure). Upon
acceptanco of this user into the conference, the ch,. .rman contacts the LCC, telling it to
add this user to the participants list. Any active LCC is always told by the chairman from
which host data should arrive, on the link issigned by this LCC (in the initial call).

NETWORK SECURE COMMUNICATION 62

When a change of speaker occurs, first the chairman tells the speaker that he does
not have the floor, then all the LCCs are set to receive data from the host of the new
speaker, and finally the host of the new speaker is told to send data to all the
participating hosts. Only after the LCC finds itself prepared to ship the data out is the
user notified to start talking. (Of course, change of speakers in the same site may be
simpler, since other hosts do not have to change their receiving procedure.) At any time
each participant may send to the chairman control information (e.g., "I want to talk next").
The chairman may at any time send control information to any participant.

As a general principle, all control messages are between the chairman and the LCCs,
never directly between the chairman and the participants themselves. However, the NVCP
pro-tides a means for direct control communication between the chairman and each
particip-nt. This information is communicated via 8-bit bytes whose meaning is not
inixerpreted by the LCC. This communication is carried by special ,ontrol messages (e.g., "I
want to talk"). Control information between the ch,"rman and the individual partcipants
that has to be understood by the LCC is carried by other messages (e.g., "please shut up").

Cemmeu. Note that the chairman might never speak if he so wishes (e.g., when it
is an automatic program). There is no requirement for the chairman ever to send d.ita
messages (i.e., voice).

The chairman may assume that all his instructions to th'e LCCs are followed at once.
It is the responsibility of tNn. LCCs which delay their action (probably depending on data
flow) to remain synchronized.

NVCP, like NVP, uses the controlled messages (Type 0/0) for all control information,
and might use u'controlled (Type 0/3) or "normal" messages for voice data. Each vocoder
is expected to start its output with the time-stamp (i.e., parcel number) set to zero.

Summery. With the model upon which our system is based, it can be recognized
that a protocol is needed. The NVCP provides the needed facilities for a real-time
packet-switched network conference system.

The EPOS Operating System

One of the critical links in the network/host/signal processor chain which is
necessary for packet speech is the host and its operating system. The ELF operating
system, developed by SCRL, was originally chosen for the NSC project's PDP-1 I operating
system because it was originally tailored for speech applications and was the only
.tvailable PDP-1I1 operating system capable of supporting packet speech.

Both the initial CVSD and LPC packet speech systems were implemented ,s:ng ELF
as the PDP-1 1 operating system. During the network experiments with these systems,

NETWORK SECURE COMMUNCATION 63

however, it was discovered that the PDP-I I was very heavily loaded and that most of the
end-to-end delajy was caused not by the ARPANET, but by delays within ELF itself. For
example, spcei~h packets were recopied from buffer to buffer in the PDP-I 1 several times
before being processed, each time causing additiona! delay and overhead. The PDP-11
was busy fron' 90 to 100 percent ot the time handling one 3500 bps LPC vocoder, as
measured by UNI US utilization. The 8000 bps rate of the initial CVSD-based packet
speech experiments was handled by an early, non-virtual-memory version of ELF which
was not powerful enough to handle the LPC system. Therefore, in order to handle LPC
conferencing, transnet and local CVSO conferencing, and possible future applications, the
operating system was re-designed. The result, EPOS, is the Environment for Processing of
On-line Speech.

Although the differences between EPOS and ELF are extensive, some of the major
speed improvements were accomplished by:

• Restructuring system control blocks to optimize the code referencing them; in
particular, the context switch code was reduced by half.

* Reducing the number of context switches required in interval timer handling by
eliminating the process which managed the interval queue, again reducing the
overhead by more than one half.

0 Using a more efficient algorithm for inter-address-space data transfers, cutting
the time by v factor of 8 to 20.

* Totally re-organizing tne I/O architecture and control structures. Rather than
having a general 1/0 control process with drivers for specific devices, EPOS uses
a separate process tor each device; this allows the code to be specialized for
each device, so that fewer instructions are executed than for a generalized
process. I/0 operations pass less information because more is kept in kernel
control blocks. This allows passing the parameters in registers rather than
copying a block of information to the kernel, cutting the overhead by a factor of
five.

* The network control process takes full advantage of the capabilities of the IMP
interface to provide maximum throughput. Specifically, for the network speech
applications, network messages are input and output to/from the user
program's buffers, eliminating expensive copying. Probably the most significant
reduction in overhead is due to the efficient management of network I/0.

I
NETWORK SECURE COMMUNCATION 64

In addition to performance improvements, EPOS has a number of features which
make it easier to use:

* System control blocks are not statically allocated; rather they are allocated from

dynamic storage as they are needed. This means that the system need not be
tuned for the resource requirements of a specific application at system I
generation time.

* The concept of a "job" is incorporated into the kernel of EPOS, rather than the
EXEC as in ELF. Putting user programs in separate jobs allows isolation from
errant neighbors and facilitates protecting the system against user error.-

0 I/O calls in EPOS are like those of TENEX. We have found that the ease of use
of these calls has significantly reduced the time required to write application
programs.

In more detail, EPOS supplies the following facilities for application programs:

e Process management: EPOS combines process scheduling and interprocess
communication in a single signal/wait mechanism. Semaphore operations are
also available. The system supports all normal auxilliary functions (process
creation, deletion, freezing, and thawing). This allows segmentation of
application programs into muitiple processes to correspond to the logical
structure of the task.

• Job Management: A job is an independent computing environment, ch with its
own set of private resources such as address spaces, processes, open files, and
assigned I/O devices. The kernel's address space and kernel processes belong
to job 1, which is allowed special privileg&s by several system funct.ons. Other
jobs run in user or supervisor space and are created in response to a control-C
input from ary un-ssigned terminal.

o Memory management: EPOS allows each job to use multiple address spaces and
to use separate instruction and data spaces cn madhaicries whuse merlory
management hardware supports this feature. "Virtual move" functions allow
transfer of data between address spaces within a user job, or (when invoked by
kernel functions) between any address spaces. Page mapping allows sharing
memory pages and including particular physical pages in an address space. The
latter feature is used primarily for communication with signal processors through

shared memory.

0 I/O management: System calls handle either bytes or strings The latter may
have a specific length or may be delimited by a specified characte,, ,u,.h as a 0
byte. EPOS also supplies asynchronous I/0 calls, which do not block the calling

NETWORK SECURE COMMUNCATION 65

process while its request is pending or in progress. Devices currently
supported include terminals with either DL1 1 or D !!1 interfaces, IMP interfaces,
disks, and W-521 CVSD vocoders. Disk I/0 is currently limited to reading and
writing existing DOS files. Files opened on a pseudo-device (IPP:) become
interprecess ports; this is the only means of communication between user jobs
which does not require doing physical I/0.

0 Special-purpose hardware support: In addition to page mapping, several system
calls allow user processes to perform device manipulation functions for signal
processors or other special-purpose hardware. User processes can allocate
interrupt vectors and specify the contents of signals to be issued when the
interrupts occur, and they can get and set the contents of particular device
interface registers.

Along with the EPOS operating system, the EPOS Exec provides a convenient
environment for debugging and using application programs. The Exec has external
characteristics almost identical to the TENEX Exec. It provides utility services for loading
and running programs and checking their status. It also communicates with the debugger
to allow a user to change easily to debugging mode if a program requires modification or

repair.

One important feature of any programming environment is a good debugger. All the
existing PDP-1 1 debuggers of which we were aware fell far short of our standard, TENEX
IDOT. Many did not provide any symbolic capabilities at all (user-defined symbols,
instruction type-in, etc.). Most were written to run stand-alone on a PDP-11 and would
have required extensive modifications to function in the EPOS multi-process environment.

Because of these problems and because we felt that a powerful debugger was
essential to enable us to produce good software efficiently, we designed MEND, the Multi
Environment Native Debugger. The design provided the most powerful set of features
provided by any debugger with which we were familiar (including IDDT). Implementation
of MEND has been approximately 75 percent completed; the only major feature lacking is
the breakpoint and trace facility, upon which implementation has already begun.
Debugging done with the partially completed MEND has confirmed that we have indeed
provided a most powerful debugging tool.

High-Speed Signal Processors

Much of the effort spent in the LPC implementation portion of the NSC project was I
spent in isolatin, and correcting design problems in the SPS-41 signal processor which
prevented the LPC programs from running. The Phase I version of LPC consumes about
95 percent of the SPS-41's time, and uses 13 of the machine's 16 InDut/Ouiput
Processor channels. Considerable time and effort was spent in adapting algorithms to the

NETWORK SECUIRE COMMNICATION 66

fixed-point architecture of the SPS. Even after many problems were corrected, the
SPS-41 was not reliable enough for useful demonstration work; therefore it became
apparent that, in order to do high-quality packet speech research and demonstrate the
results, a more powerful, reliable, easier-to-program processor was required.
Consequently, in late 1975, an evaliation of the available state-of-the-art high speed
signal processors was undertaken. The requirements which had to be met were as
follows:

" High reliability.

* Expandability.

" Availability of a simulator written in a high-level language and runnable on
TENEX.

" Portability.

* Floating point arithmetic.

More than 10 machines were surveyed, mostly commercial products, with sore
research-type machines. Cost, availability, and capabilities soon narrowed the field to two
machines. An effort was made to obtain simulators (runnable on TENEX) for both machines
and write and run programs on them to assess the relative difficulty of programming each
machine. A secondary goal was to estimate the size and speed of LPC running on both
machines. ISI was able to obtain the simulator for one machine, and implemented the basic
signal-processing subroutines needed for LPC on that simulator in a few weeks. That
machine, the Floating Point Systems AP-120B (FPS) was chosen as the most suitable signal
processing system.

The FPS AP-120B machine was delivered to ISI in June 1976, and interfaced to the
NSC project's PDP-1 1/45. The Phase I LPC system is expected to be operational on the
FPS/PDP-11 combination in July 1976, with the Phase II system to follow a month later.
ISI's experience to date indicates that the FPS is reliable and programs which run on the
simulator will run on the FPS.

LPC

Most of the progress in the area of Linear Predictive Coding (LPC) in the past year
has been in LPC conferencing and the acquisition of a new, reliable, high-speed signal .
processing computer (the FPS) and the implementation of LPC. The original transnetwork
LPC experiments were conducted in late FY75, and the operating Phase I LPC algorithm
has changed little since then, except for some relatively minor quality improvements.

NETWORK SECURE COMMUNICATION 67

The major effort in LPC conferencing involved the development of a Network Voice
Conferencing Protocol (NVCP), wnich is described in [COHEN]. The conferencing system
was brought up in December 1975, and uses the standard Phase I LPC. When the
Phase II LPC is implemented, it can be easily installed in the conferencing system because
of the modularity and structure of the NVCP.

A Phase II LPC system has been specified by BBN [VISHUJ. The Phase II LPC
system will be a variable-rate system with a peak rate of about 5500 bps but an average
rate of less than 2000 bps, compared w#ith the constant 3500 bps output of the Phase I

LPC system. Both rates apply to non-silence. Neither the Phase ' nor the Phase II
system transmits anything during silence periods exceeding about 200 ms. This is
achieved by using a distance measure between the analysis parameters generated by the
LPC vocoder. The Phase II vocoder operates at a fixed frame rate of about 100
frames/second, using the distance measure to compare each frame's parameters with the
last set of parameters transmitted. The new parameters are transmitted only if they
differ sufficiently from the previous ones to warrant transmission.

The Phase I LPC system has been imlemented and is being tested on the FPS
AP-120B signal processor. This implementation is a special case of Phase II. Within
short time the Phase I LPC system using the FPS will be operational on the ARPANET,

followed shortly thereafter by the Phase II system.

Hardware Development

Hardware developed for MA-BELL includes

9 An interface (the PB-11) which allows four CVSD vocoders to be interfaced to
the PDP-11 through a single DRI1-C word-at-a-time interface.

* A silence detection scheme (based on one developed by Lincoln Laboratory) was
implemented as part of the P8-11, allowing the PDP- 1. to tell when a !,peaker
using a CVSD vocoder is silent.

* Two generations of control boxes for conference control and general-purpose
use on the PDP-11 (see Figure 6). (Note the decrease in size from the first to
the second generation.)

* A sophisticated telephone-answering and calling system which allows
general-purpose input and output from a touch-tone telephone to and from
the PDP- 1l.

1 1

NET'WORK SECURE COMMNIATION 68

RESEARCII AND DEVELOPMENT GOALS

The overall goal of the NSC project at ISI is to provide high-quality research and

development in all areas concerned with digital voice transmission over packet-switched
networks. Specific goals for future research and development activity are

* Further development of on-line conferencing systems.

* Development of dynamic on-line arid off-line systems for storage, transmission,
and retrieval of speech, including FTP and voice message capabilities.

* Integration of speaker authentication and possible isolated word or phrase
recognition into all areas of the network speech systems.

* Continued attention to important issues of efficient, human-oriented user
interfaces to network speech systems.

* Implementation and use of two reliable network speech demonstration systems
based on the FPS AP-120B high-speed signal processing computer.

IMPACT

The NSC effort can be expected to have a broad impact on one high-priority military
item, secure digital voice communication. In digital communications in general, the NSC
work has provided the prototype of a packet-switched voice communications system.
There is little doubt in anyone's mind that at some point in the future all speech
communications will be transmitted digitally, whether it be military, business, or personal
communication. Since packet switching has been proved to be a highly cost-effective and
bandwidth-conserving technique, there will certainly be many future packet speech
systems. Packet speech techniques can be applied to any digital transmission medium,
whether it is telephone, radio, satellite, or optical.

There will be a need for well-engineered user -. teri ces for any and all future
communications systems, an area which is often developed as an afterthought, particularly
in areas other than personal and consumer applications.

Packet speech has clready had an appreciable impact on networking. It was Zhe
first system on the ARPANET to require relatively high bandwidth with low delays without
rigid error detection and/or correction. A new type of message, the Type 3 or
.minimum-effort" message, was implemented as a direct result of this reqirement. The

packet speech system has brought improvements in dynamic network measurements at the
host-to-host level, in order to optimize communications, and will bring about more
improvements in dynamic network measurements in the future.

NETr-O< SECURE COMMUNICATION 69

The signal processing aspects of the NSC effort have already had a wide impact on
the speech compression and military communications communities. TIe ARPA NSC effort
and the people involved in it have greatly influenced the low-cost low-bandwidth vocodbe
specified by the DOD consortium, of which ARPA was a member. The LPC aigorithm is
serving as a front end to authentication systems developed at SCRL and phrase
recognition systems developed at Lincoln Laboratory. Using the NVP, these systems can
and will be used via the ARPANET. There will also be significant impact on other areas,

including operating system design for systems handling high-b&ndwidth data such as
speech, practical low-cost high-speed computing systems using signal processors, and, of
course, future network design.

REFERENCES

(MARKEL 72] Markel, John D., "The SIFT Algorithm fur Fundamental Frequency
Estimation," IEEE Transactions on Audio and Electroacoustics, Vol. AV-20, No. 5,
December 1972, pp. 367-77.

[MARKEL 74] NSC Note 20, Linear Prediction AnaLysis/Synthes4s Program, John
D. Markel, Speech Communications Resetarch Laboratory, Inc., 1974.

[COHEN) Cohen, Dan, Specifications for the Network Voice Protoco4L USC/Information

Sciences Institute, ISI/RR-75-39, March 1976.

[VISHU] NSC Note 82, Specifications for ARPA-LPC System I1, R. Viswanathan and John
Makhoul, Bolt Beranek & Newman, Inc.

70

7.
SPECIAL PROJECTS

XEROX GRAPHICS PRINTER

Research Staff.
Stephen D. Crocker

Pete Alfvin
Ronald Currier
Dono van-Mierop

2

Since its inception, ISI has undertaken several hardware development efforts in
support of research requirements or to demonstrate a capability for a recognized PoD
application. As reported in [AR 74], one of the most significant of these projects is the
development and use of the Xerox Graphics Pr;nter (XGP), a high-quality document printing
capability in the form of a network terminal.

Two XGP systems have been installed, one at ARPA and one at ISI. They provide
high-quality on-line hard copy with proportional spacing of characters according to width.
and use of multiple fonts. This report is an example of the XGP's capabilities.

From mid-1974, when these systems were installed, until September 1975, the
components of the XGP systems at both ARPA and ISI consisted of a modified Xerox
machine interfaced to a PDP-11/40 with 32K words of core arid 256K words of disk,
interfaced via a 2400-baud 'ine to the ARPA TIP, and driven over the ARPANET by any
TENEX system, particularly OFFICE-i, ISI, and ISIB. See Figure 7.1.

Durarig the last half of 1974 problems with throughput and user controls were
uncovered. These problems are documented in last year's annual report [AR 75]. To
correct these problems, a short-term project was established to improve these systems.
The primary improvements are background queueing and transmission of files, overlapped
printing and transmission, and automatic shipment of character sets. The following specific
steps were taken:

1. The connection between the PDP-I 1 and the TIP was changed to use a
host interface. Corresponding changes in the software in the POP-It
were 31so made.

2. Printing and transmission have been overlapped to achieve maximum
throughput

3. Shipment of charicter sets to the POP-i I is now performed autom--,,-ally.

SPECIAL PROJECTS

I JI

M,rti Coa'e Ph'.tos

Ftgure 7.1 Xerox Graphtcs Prtnter anid Lts processor

SPECIAL PROJECTS 72

4. A new foreground program called XGP has been written to repl.ce the old
XLIST program. It queues files for printing by a new background process
modeled after the LPT server

5. Defaults have beer established so that the user has to supply only the

name of the file to be printed to the XGP program.

6. A new device, XGP:, has been installed in TENEX so that users may output

directly to the XGP

Connection of the PDP-l as a Host

In order to support high-speed network transmission, the hardware of the POP-I!.
has been augmented with a host interface and enough memory to support both the ELF
operating system and the XGP program The total core on each PDP-1i is now 64K
instead of 32K Memory napping hardware has also been added.

The old software, based on CML~s PDP-I I XGP program, has been replaced oy a

combinaton of VM ELF and MIT's XGP program TPe VM ELF system provides network and
disk I/O and address space management MIT's XGP software is a much improved version
of CMU's software, pro-/idirg the same functions of converting character codes to raster
lines suitable for transmission to the XGP hardware

Overlap of Printing with Transmission

Text received from the ARPANET is buffered onto the desk. Printing is initiated

after the first page has been received If transn',ssion is slowed after prin~ing has started
and the printing process 2ctually catches up to the transmission, printing is interrupted at
the newt page boundary. Printing resumes when sufficient text has b.en received.

In normal cases, throughput of a few kilobits per second is all that is required to

keep up with the printing process. Even when TENEX is heavily loaded, :t is usually able
to accomplish this

V1

SPECIAL PROJECTS 73

Itomation of Character Se Shipment

The background TENEX process now accepts commands from the text file to ship
character sets to the POP-i1. Correspondia changes to XOFF to generate these
commands have been made and use of character sets is now cor.'rolled entirely by the
commands in the text file.

Revision of Core /llocation

The origina. core allocation scheme in the POP-i1 program placed each new font in
progressively increasing memory locations. Eventually, memory space was exhausted ard
the printing process was aborted. Since only two fonts are active at any one time, it is
possible to reuse the space released by previously used fonts. A strategy to reuse the
core space was designed and implemv.ented

Esiabliasment of Defaults lor)%GP and the PDP-II

3.etaults for paper size, margins, character sets, a'nd tab stops have been
established so that line-printer -type files print as much as p~ossible as they would on the

printer.

Queueing of Files

The functions of the original XLIST orogram have been divided into two parts. One
part interacts with the user to accept file names and destinations. It copies the file into
the XGP-PRINTER directory. The second part is a permanent background task which

attempts to connect to the XGP and sends files stored in the XGP-PRINTER directory to ,.Ie
designated XGP.

Conclusion

This system became operational in late 1975. The XGP special project was

disbanded in January 1976 and maintenance of the XGP system is now performed by the

ISI Systems Group of which Pete Alfvin is the principal coo'dinator for the XGP effort.

A

SPECIAL PROJECTS 74

References

(AR 74] Annual Techscl Report, May 1973 - May 1974, USC/Informatic,- Sciences

Institute, IS'-SR-74-1, 1974.

(AR 75] Annual Tochn a Report. Aay 1974 - May 197c, USC/Information Sciences

Institute, ISI-SR-75-3, 1975.

NSW SUPPORT

Re.iearch Staff:
Stephen D. Crocker

Chloe HoIg
David Wilczynski

The National Software Works (NSW) !; an ARPANET-based distributed ope'ating

system to provide a uniform computing environment for software developers. Servicez

within the NSW are provided on some of the ARPANET host computers. These computers,

called Tool Bearing Hosts, are connected logically by a centralized Works Managev whose

responsibilities include maintaining a single NSW file system, validating user rights, and

assigning resources. In addition, the NSW includes a user interface, c'Alled the Front End,

to give the wofking community access to Vie NSW's procedures and facilities. (See

[Carlson 74], (Crocker 75b], and 'Millst:r 76, ;.ji - deeper view of the NSW.)

Our role in the NSW project was to review tachnical progress and provide

information/consultant service for the project. Our task involved four areas:

* Information and consuiing service.

* Participation in the design of the System Design Laboratory (SL) of the
Nava; Electronics Laboratory Center (NELC).

* Document control and preparation.

I NSW system testing.

SPECIAL PROJECTS 75

Iuf iRm e " O fa end Consult ig S owc o

While ths NSW was being clesigrxd, we acted as an information source for potential

'iSW users and other inter tsted parties. In particular, we provided seminars to the U.S.
Army Electronics Command at Fort Monmouth, New Jersey, the Naval Air Software
Management Advisory Committee (NASMAC) at the Naval Weapons Center at China Lake,
and the System Design Laboratory design team at Naval Electronics Laboratory Center in

San Diego. We also made presentations at the ?4OS/ACM/IEEE-.ponsored workshop on

currently available testing tools in Los Angeles April 1975 (Crocker 75a]l ax tie, meeting

on Twenty Years of Computer Science in Pisa, taly during June, 1975 (Crocker 75b], and
at the October 1975 meeting of the Los Angeles chapter of SigSpace.

SDL Design wit NLC

As an outgrowth of our initial contact with the SOL design team at NELC we were

asked to join their design effort to provide NSW expertise after it became clear that N3W
was the appropriate vehicle for their system As active participants, we helped ,.%.tin
their initial Operating Capabilities for their first demonstration system. Later we helped

write their preliminary design report [NELC 763

As part of this consulting effort we also helped produce a requ;rements list for their
tront-end work station (Wilczynski 761 That list was communicated to the NSW
developers and was acted upon by Stanford Research Institute by means of a change in
their front-end specifications.

Document Control and Preparation

ISI has been the documentation center for NSW. Continuing respons'.ility for
documentation will rest with Massachusetts Computer Associates (MCA) Transfer of the

activity is in progress. Since early implementations of the NSW were TENEX-based, we
received many queries from NSW users about TENEX. To help these users we compiled
two documents as an introduction to the TENEX facilities [Holg 76a, Holg 76b).

NSW System Testing

When the NSW became a usable TENE'l -yswem, ISI was chosen to house a prototype
version for general use. Our system us(; helped the develoners uncover bugs. We also
worked directly with the Campus Comriter Network people at UCLA to help debug the
NSW batch tool interface to their IBM 360 for programs required by the SDL for their IOC
system.

SPECIAL PROJECTS 76

S.nce we were the first 'outsiders' to have access to the NSW, we were also the
first to have detailed knowledge of how tc use the system. Since the NSW user guide was

not due until June 1976, we produced one on our own initiative CHWSI 764l

References

(Carlson 74) Carlson, W. E., and S. 0. Crocker, 'The Impact of Networks on the Sofware-
Marketplace.' Proceedings of EASCON 74, October 1974.

(Crocker 75a] Crocker, S. 0., and R. M. Balzer, 'The National Software Works: A NewI
Distribution System for Software Development Tools,' Workshop on Curreniy

Avcaiebl. Progjram Testing Tooi, sponsored by NBS, ACM and IEEE, April 1975

(Cracker 7--.o, Crocker, S. 0., -The Nat-onal Software Works: A New Method for Providing

Saftware i~z. 'Iopment Tools U .'ng the ARPANET,' Proceedings from the Moeiung on

20 years of Cornputer Sctence tn lay, Piss, Italy, June 1975 (also Caoo. Vol XII,

[HoIg 76-j Hl-og, C. S., Jcuy of TENEX, USC/Information Sciences Institute, Iniformation

Memno, April 1976.

[HoIg 76b] Hoig, C S., More Joy of TENEX, IJSC/lnformation Sciences Institute, Information

Memo, April 1976.

[I-olg 76c] H.o~g, C. S., and 0 Wilczynski, A Very Prelimtnary NSW User's Gutde.

USC/Information Sciences Institute, Information Memo, May 1976.

[Millstein 76) V.01stein, R. E., Serm-Annual Technical Report, Massachusetts Computer

Associates, CAD7603-041 11, March 1976.

[NELC 76] System Design Laboratory Pretimnary Design Report. NELC TN 3145, March
1976.

(Wilczynski 76] Wilczynski, 0., A Mcntm,i Front-End Pro posai. USC/Information Sciences

Institute, Information Memo, February .976.

SPECAL PROJECTS 77

TE1RMINLI. DEVFLOPME?:NT

Rvsear,:h .Vff:
Robert H. Stotz
Donald Oestreicher

Robert T. Martin
D o van-Moro

Back ground

A significant part of the IA project (Section 5) is devoted to providing good human
engineering to the military message service. For the traditional action officer to accept it,
the service must be easy and simple to use. This applies particularly to his interaction at
the CRT terminal. Therefore, we believe it is critical to provide two-dimensional editing
with instantaneous feedback from triial operations, as though the user's keystrokes
actually performed the operation (insert a character, delete a character, move cursor,
scroll, iden y a cursor location as being data of interest, etc.). Other more complex
operations are dealt with as commands to the system's Agent. For these, inoication of

command input should be instantaneous, but longer delay in actually performing the action
is acceptable.

For a message service test where users are separated by the network from the
supporting hos, computer, it is impossible to supply the necessary speed of response
unless processing is done at the tarmnal site. With this two-stage architecture in mind,
the IA project has designed a front end process (called Terminal Control) as a separable
module for locally handling actions in the terminal. Terminal Control currently resides in
TENEX, but it is being moved to a microproce.sor which wl~ then be provided as a part of

each CRT terminal on Oahu.

Terminal Control Functions

The Terminal Control manages the terminal keystroke input ai.d display output. On
input from the keyboard the Terminal Control does local character buffering, text editing,
break determination (when to send the character buffer), local echo to the display, and
text editing (on the input character buffer or the output display buffer), etc. On output to
the terminal it handles multiple windows (contiguous areas of screen) and domains (logical
blocks of text within windows), dynamic formatting of data in screen wiri.'vws, bu' fering of
more data than can be displayed in a window, scrolling of windows, maintenance of a
logical cursoi address, and interface to the rest of the system. Domains have properties
assigned them by their owner (whatever module created the display) such as highlight,
editable, break characters allowed, etc., which allows the Terminal Control to handle
keystroke input differently in different domains.

A..l~hll, lFl

SPECIAL PROJECTS 78

The Terminal Contro! is general-purpose in nature, so that it can be effective for
other message servaces for this test and for applications beyond military message handling.
With appropriate host software, it will support a variety of styles of command language
input (teletype style, command window style in the manner of NLS, menu selection style,
etc.) as well as two-dimensional full screen editing. An additional function that must be
provided at the terminal for the Military Message Experiment on Oahu is a piece of
hardware that indicates the security level at which the user is operating and that provides
several keys for confirming or not confirming changes to his level. This equipment, called
the Security Control Box, must be "trusted" n a secur-ty sense and is therefore not to be
incorporated into the terminal microprocessor.

W y These Functions Should Be in the Terminal

For se- ,l reasons, we believe the terminal is the right location for this processing.

First, good response is guaranteed. The blocked nature of the data transfers will reduce
network and TENEX overhead. It also provides maximum configuration flexib:!;ty, since
stand-alone terminals can work through TIPs or data concentrators at any point on the
network. Last, it is consistent with the security approach being adopted for the Oahu
test, and for end-to-end encryption, should that ever be added to the system. The trend
is toward more capacity per dollar invested in each terminal, so that even if this approach
is not the most cost-effective now, we are confident it will be within two or three years.

Terminal Selection

A study of available terminals failed to locate one with the desired display
characteristics, and a 64K byte address space, and running at 1 to 10 microseconds per
instruction; we have thereture decided to use a new upgraded version of the HP 2640A
terminal, which conta,ns an 5080 microprocessor in place of the 8008. The 2640A was
chosen by ISI a year ago for in-house terminal use because it offered the best design and
reliability available at that time. In general, ISI has been pleased with the performance of
these terminals.

Plan

The basic approach for early development of terminal software is to emulate the
display processor in P9IM (Section 2) and devel3p the bulk of our software there, which
has the advantage of having available the powerful creation and debugging tools of the
PRIM environment. The major shortcoming of this approach is that PRIM has virtually no
I/0, which is the terminal microprocessor's major activity. Thus, though we can determine
that the individual programs do what we expect them to do, we cannot chec- oui the
real-time aspects of the integrated program operation. This step will be done on a
pvototype terminai which contains all (64K) read/write mnemory (RAM).

SPECIAL PROJECTS 79

Besides the major task of putting the lerminal Control into the terminal
microprocessor, some minor hardware changes are planned. For example, it is necessary
to label the key caps of all the function keys with appropriate mnemonics and to add

external circuitry to drive the Security Control Box.

The plan calls for four terminals equipoed with 64K of RAM memory for development
and checkout work, then 'production' terminals for the operational test equipped with the
proper mix ." ROM (program store) and RAM (data and buffer store). We have estimated

this split to be 16K RAM and 48K ROM. One prototype terminal i! required for initial

development and debugging. Three more prototypes will then be produced and given to
the m essage service developers (ISI, b3N, and MIT). After the prototype units have been
shaken down with the message services, "production" terminals will be- made for the
operational test, a step which involves producing 24 ROM masks at a high one-time cost
(any changes in the firmware after these ROMs have been made will be eaue, .. y costly)
Production terminals for the test will be delivered together with wheeled tables with
folding wings.

The Security Control Box will be provideo with approximately four LEDs to indicate
the !evel of security of the screen.

Progress to Date

A specification for the external characteristics of the terminal has been submitted to
the participants in the Military Message Experiment. Internal program specifications have
been written and programming begun. A PRIM 8080 emulator is operating and several
routines have been written and checked out on it. ISI is using a prototype of the new HP
terminal for evaluation and initial program development; this will be replaced by an early
production unit, to be purchased when available.

_ I
?3

.-. &

8o

8.
ARPANET TENEX SERVICE

TcchncaL Szaff. Support Staff.
Mareon McKinley, Jr. Ralph W. Caldwell

Pot* Alfvin Wanda N. Canillas
Alan E. Algustyniak Larry Fye
Dale Chase Orali E. Garza
George Dietrich Delia A. Heilig
Glen W. Gauthior Kyle P. Lemmons
Donald R. Lovelace James W. McKinley
Raymond L. Mason Gary Seaton
William H Moore Rennie Simpson
Donna J Navgel Michael E Vilain
Clarence Perkins Deborah C. Williams
Vernon W Reynolds
Dale S. Russell
Leo Yamanaka

INTROLUCIION

The ISI ARPANET TENEX service facility is operated as a development and service
center in support of a broad set of ARPA projects. It currently services more than 1000

directories, son-e of which are multiplexed by several users. Approximately 95 percent of

the users access the facilities via the ARPANET from locations extending from Europe to

Hawaii. All of the facility's systems are available to all usars, whether they are connected

through the ARPANET locally or remotely.

The facility consists of five Digital Equipment Corporation centrai processors (one
Ki-10, one KL-2040, and three KA-10s), Bolt Beranek and Newman virtual memory paging

boxes, large-capacity memories, on-line swapping and file storage, and associated
peripherals (see Figures 8.1 and 8.2). All systems presently run under control of the

TENEX or TOPS-20 operating system (originally developed by Bolt Beranek and Newman),

which supports a wide variety of simultaneous users.

lAIRD WARE

New hardware acquired in : past year includes one additional DEC KL-2040

(TOPS-20) system with 256K words of DEC high-speed internal memory and associated

peripheral devices (Figure 8.3), two CALCOMP 230 disk drives presently attached to ISIC
for additional on-line swapping and file storage capabilities, and a new CALCOMP 347

magnetic tape drive which is shared (as are all ISI magnetic tape facilities) among four

TENEX systems. Figure 8.2 shows the current ISI facility configuration. Note that none o'

the cent. l proce,;sors (KA-10s, KL-2040, or KI-l0) operate in dus! processor mode.

-.

0

00

to

4C

U)U

xC

w0

z&

w

NC
0 40

E Z

CLC

C-

E

ca

C ~ 0 Nl C

o~~o c5 4"0

<

-4 , 0, 0mmunnm~~m-nmmn
0 m

C--

c 0

M C

M C:1 . fl

0 w

C66

0

t; t-

0.-

>z
c.

giue~u~wIiaufmI~I~tIIIIIIIIIIIIDogfhIIIIII~tI~ 6

I6
LJO

CA m

r- (n' x c.)C
0NN

9A

0 a.

.

02 -

U~L) C.)

0n

_________~~ ~ v_
_ _ _ _ _ _'S

LAJ~

C< N

CCL

k 10

c 0 iii O i~C o v
00

n 'D
-

oF x - ;; u

aj I'l

CC,

0'~ "

ID

c 0 C"

4) 1
U Z(. C) -III v)II)II)IIIII)II

.0 F !::p I' 10Ic N .1IrI A

I0

0+- k2 ,

ARPANET TENEX SERVICE 83

oi

"IM A

Mart, Coal* Phctos

Figure V.3 View of computer room with .'L-2040 in center foreground.

Instead, the main goal of having the several systems is ;o provide a significant increase in

the availability of the ISI primary machines: Thus if one of the systems designated as a
primary machine crashes or is unavailable because of hardware/software maintenance or
development, then one of the other systems may be started as a primary machine and
service continued after a brief (15 minutes or less) interruption to switch the file storage
media and one cable.

Also included within the TENEX service facility are one BBN H-516 Interface
Message Processor (IMP), o',e BBN H-316 Terminal Interface Processor (TIP), one DEC
PDP-1 1/40 and Xerox Graphics Printer (XGP), one DEC PDP-11/45 with an SPS-41 Signal
Processing System and a Floating Point Systems AP-120B (FBS) (configured as a speech
processor), one microprogrammable processor (MLP-900) and several associated
peripheral devices such as disk, memory, special ISI-developed interfaces, TTY's etc.

Purchase orders have been submitted for additional hardware, a DEC DN87 Universal
Synchronous/Asynchronous Front End Communications system that will allow all in-house

users to directly access the in-house (ISIB KI-lO) TENEX system. This will eliminate the
requirements for the BBN-31FE TIP at ISI. Delivery of this communications equipment is
expected prior to July 31, 1976. Thirty days atter delivery the ISI TIP will be replaced by
a BBN IMP with four host ports, which will allow ISI to accommodate two additional host
systems that will allow additional users to access future ISI systems via the ARPANET.

ARPANET TENEX SERVIC 84

SOFTWARE

During the year a concentrated effort has been made to ensure that all of the ISI
TENEX service machines provided the same level of systems software. TENEX version
1.34 with some necessary local modifications was installed, nd the most recent
subsystems and documentation packages were obtained and released. To aid in this
continuing effort of software maintenance and upgrading, a method for automatically
distributing changes among all iSl service machies is now in the developmental stage and
will be implemented in the near future. We have also provided load-leveling across the
machines in conjunction with ARPA/IPTO to assure reasonable response and greatly
expanded system utilization.

Two major services, XGP printing and file archival, were improved. The XGP driver
software running under TENEX and on the PDP-11 was upgraded and stabilized, XOFF
problems were corrected, and special output options and software interfaces were
implemented (see Section 7 for details). This effort was also applied to the ARPA XGP to
bring it to the same level of service, which facilitates system maintenar :,. File archival
changes were necessitated by incompatibilities between old magtape drives and the new
CALCOMP magtape system. The old archive library was copied into a new, substant'aily
smaller library, reflecting the most recent format changes; this made the entire library
accessible to all ISI TENEX service machines.

Several members of the software group have been actively engaged in performing
comparisons of the TENEX operating systems with the TOPS-20 operating system. Upon
acceptance of the TOPS-20 system at ISI, maximum effort will be devoted to installaticn of
new JSYS's, JSYS traps, features, and modifications that will allow the majority of the
existing TENEX subsystems to operate under the TOPS-20 system. Modifications of many
of the existing TENEX subsystems will also be required as part of this effort. Attempts
will also be made to take the existing ARPA Network Control Protocol in TENEX and, with
appropriate modifications, incorporate it into the TOPS-20 opereting system. This, along
with a hardware network interface developed, assembled, and integrated into the KL-2040
hardware by IS[, will allow the TOPS-20 system to be accessed via the ARPANET.

SUPPORT PERSONNEL

ISI provides seven-day-a-week, twenty-four-hour-a-day operator, software, and
hardware support for the TENEX service facility. At least one operator is physically
on-site at all times, and the systems programmers and computer service engineers either
are physically on-site or are scheduled for one-hour on-call service.

.4

o4

ARPANET TENEX SERVICE 85

RELIABILITY

To provide required hardware/software preventive and/or corrective maintenance
of the equipment, ISI will continue cheduling each of the TENEX systems as "out of
service* (unavail ,ble to users) for seven contiguous hours each week. The remaining 161
hours of each week are intended to be devoted entirely (100 percent) to user service.
The actual long-term up-time for the network service machine has exceeded 99 percent of
scheduled up-time for the last year.

LOCAL PROJECT SUPPORT

The TEND(facility has been used extensively In support of local projects. The ISI
staff makes use of the available standard subsystems (e.g., editors, compilers, assemblers,
and utilities), and some staff members have written subsystems and utilities to support
their own projects. The facility also supports less frequently used subsystems at the
special request of users (e.g., PDP-11 cross-assemblers and the DECUS Scientific
Subroutine Package).

Major TENEX monitor modifications and a new software driver package for support
of the MLP-900 (microprogrammable processor originally developed for the PRIM project)
have been developed and verified and are now operational on ISID (see Section 2 for
details). These modifications allow more efficient use of the processor-to-processor
communication facilities between the TENEX operating system and the MLP-900.

..

iM

r

PUBLICATIONS

Research Reports

Abbott, Russell J., A Command Language Processor for Flexible Interface Destgn,
ISI/RR-74-24, February 1975.

Anderson, Robert H., Programmable Automation: The Future of Computers in
Manufacturing, ISI/RR-73-2, March 1973; also appeared in Datamation, Vol. 18,
No. 12, December 1972, pp. 46-52.

--- , and Nake M. Kamrany, Advanced Computer-Based Manufacturing Systems for

Defense Needs, ISI/RR-73-1O, September 1973.

Balzer, Robert M., Automatic Programming, l1 /RR-73-1 (draft only).

..., Human Use of World Knowledge, ISI/RR-73-7, March 1974.

--- , Imprectse Program Spectftcation, ISI/RR-75-36, May 1976; also appeared in
Caicolo, Vol. X11, Supplement 1, 1975.

--- , Language-Independent Programmer's Interface, ISI/RR-73-15, March 1974; also

appeared in AFIPS Conference Proceedtngs, Vol. 43, AFIPS Press, Montvale, N. J.,
1974.

Norton R. Greenfeld, Martin .1. Kay, William C. Mann, Walter R. Ryder, David
Wilczynski, and Albert L. Zobrist, Domain-Independent Automatic Programming,
ISI/RR-73-14, March 1974; also appeared in Proceedings of the International
Federation of Informaton Processing Congress, 1974.

Bisbey, Richard L., Jim Carlstedt, Dale M. Chase, and Dennis Hollingworth, Data
Dependency Analysts, ISI/RR-76-45, February 1976.

--- , and Gerald J. Popek, Encapsulation: An Approach to Operatng System
Security, ISI/RR-73-17, Oecember 1973.

Carlisle, James H., A Tutorial for Use of the TENEX Electronic Notebook-Conference
(TEN-C) Sy:tem on the ARPANET, ISI/RR-75-38, September 1975.

-1

87

Carlstadt, Jim, Richard L. Bisbey It, and Gerald J. Popak, Pattern-Directed Protection
Evaluction, ISI/RR-75-3 1, June 1975.

Cohen, Dan, Specification for the Network Voice Protocol4 ISI/RR-75-39, March 1976.

Ellis, Thomas 0., Louis Gallenson, John F. Heatnier, and John T. Melvin, A Plan for
Consolidation and Automation of Military Telecommunications on Oahu,
ISI/RR-73-12, June 1973.

Gallenson, Louis, An Approach to Providing a User Interface for Military
Computer-r/'Ided Instruction in 1980, ISI/RR-75-43, December 1975.

Good, Donald I., Ralph L, London, and W. W. Bledsoe, An Interactive Program
Verification System, lSl/RR-74-22, N!ovember 1974; also appeared in IEEE
Transactions on Software Engineering, Vol. SE-i, No. 1, March 1975, pp. 59-67.

Heafner, John F., A Methodology for Selecting and Refining Man-Computer
Languages to Improvie Users' Performance, lSl/RR-74-21, September 1974.

-- Protocol Analysis of Man-Computer Languages: Design and Preliminary
Findings, ISI/RR-75-34, July 1975.

Igarashi, Shigeru, Ralph L. London, and David C. Luckham, Automatic Program
Verification 1: A Logical Basis and Its Implementation, ISI/RR-73-1 1, May 1973;
also appeared in Artificial Intelligence Memo 200, Stanford University, May 1973
and Acta Informatica, Vol. 4, No. 2, 1975, pp. 145-182,

Kamrany, Nake M., A Preliminary Analysis of the Ec~onomic Impact of Programmable
Automation Upon Discrete Manufacturing Products, lSl/RR-73-4, October 1973.

Mann, William C., Otaiogue-Based Res. arch in Man-Machine Communication.
lSl/RR-75-41, November 1975.

Martin, Thoas H., Monly C. Stanford, F. Roy Carlson, and William C. -Mann, A Policy
Assessment of Priorities and Functional Needs for the Military Computer-Aided
Instruction Terminal, ISI/RR-75-44, December 1975.

Oestreicher, Donald R., A Microprogramming Language for the MLP-900, ISI/RI'-73-8,
June 1973; also appeared in the Proceedings of the ACM Sigplan Sigmicro Interface
Meeting, New York, May 30-June 1, 1973.

Richardson, Leroy, PRIM Ov'erview, ISI/RR-74-19, February 1974.

578

Rothenberg, Jeff, An Editor to Support: Military Message Processing Personnel,
ISI/RR-74-27, June IS75.

- ,An Intelli gent Tutor. On-Lir. Documentation and Help for A Military Message
Serv'ice, ISI/RR-74-26, May 1975.

Tugender, Ronald, and Donaid R. Qestreicher, Basic Fusnctional Capabilities for a
Military Message Processing Serzic., ISI/RR-74-23, May 1975.

Wilczynski, David, A Process Elaboration Formaligm for Writing and Analyzing
Programs, ISI/RR-75-35, October ID75.

Vonke, Martin 0., A Knowledgeable, Lanzguage-Independent Syste. 'i for Program
Construction and Modification, ISI/RIR-75-42, December 1975.

Special Reports

Annual Technical Re par May 1972 - May 1973. ISI/SR.-73-1, September 1973.

A Research Program in the Field cf Computer Technology, Annual Technical Report,
May 1973 - May 1974, ISI/SR-74-2. July 1974.

A iHesearch Program in Computer Technology, Annual Technical Report, May 1974 -

June 1975, ISI/SR-75-3, September 1975.

Bisboy, Richard U, Gerald Popek, and Jim Carlstcodt, Protection Errors in Operating
Systems: Inconsistency of a Single Data Value Over Time. ISI/SR-75-4, January
1976.

Carlstedt, Jim, Protection Errors in Operating Systems: Validation of Critical
Variables, ISI/SR-.75-5, May 1976.

Hollingworth, Dennis, and Richard L. Bisbey 11, Protection Errors in Operating
Systems: Allocation /Deallocation Residuals, IS!/SR-76-7, June 1976.

Technical Mlanuals

Gallenson, Louis, Joel Goldberg, Ray Mason, Donald Qestreicher, and LeroyI
Richardson, PRIMv User's Manual, ISI/TM-75-1, May 1975.

XED Manual, ISI/TM-76-3, May 1976.

